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Abstract 
 DNA methylation is a chemical modification of DNA that confers upon identical sequences 
different identities that are reflected in different gene expression programming. DNA 
methylation  has a well established role in cellular differentiation by providing a mechanism 
for one genome to express multiple phenotypes in a multicellular organism. Recent data 
points however to the possibility that in addition to the innate process of cellular 
differentiation, DNA methylation can serve as a genome adaptation mechanism; adapting 
genome function to changing environmental contexts including social environments. A 
critical time point for this process is early life when cues from the social and physical 
environments define life-long trajectories of physical and mental health. DNA methylation 
and additional epigenetic modifications could therefore serve as molecular links between 
“Nurture” and “Nature”.  Data that are consistent with this new role for DNA methylation as 
a mechanism for conferring an “environment” specific identity to DNA will be discussed.
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DNA methylation  
Many but not all organisms bear chemically modified bases in their genomes. 5-methyl 

cytosine is modified by an enzymatic transfer by DNA methyltransferase (DNMT) (1) of a 

methyl moiety to the 5‘ position in the cytosine ring from the methyl donor S-adenosyl-

methionine (SAM) (1, 2).  A commonly methylated sequence in vertebrate genome is the 

dinucleotide CG which is highly enriched in human genomes at promoters (3). Interestingly 

CG sites around transcription start sites are mostly unmethylated which is consistent with a 

role for DNA methylation in silencing gene expression (4). The majority of DNA methylation 

occurs in CG dinucleotides that are either sparsely distributed or in promoters that are 

silenced by DNA methylation during differentiation or as a consequence of abnormal or 

pathological processes (5). For example, tumor suppressor genes are abnormally methylated 

in cancer resulting in silencing of gene expression and tumorigenesis (6). CG methylation is 

in a palindrome that could be faithfully copied during DNA replication from the template 

strand to the nascent daughter strand by the semiconservative DNMT1. DNMT1 

preferentially recognizes a newly synthesized CG dinucleotide when the CG on the template 

sequence is methylated (7).  Thus, CG methylation could be faithfully methylated through 

multiple cell divisions offering a mechanism for epigenetic inheritance. However, a certain 

faction of DNA methylation in the genome occurs in non-CG methylation (8).  

 

Non-CG methylation cannot be automatically inherited from a template strand since there is 

no C methylation on a template across either a CC (the complementary sequence is GG), CT 

(AG) or CA (TG) sequences. This suggests that there must be mechanisms other than 

template-strand for maintaining DNA methylation states (9).  Although these non-CG 

methylation sites were discovered mainly in stem cells (8), it is still possible that non-CG 

methylation is present to a certain extent in mature cells as well (10) It is known that the two 

de novo DNMTs DNMT3a and DNMT3b (11) do not require a methylated C on the template 

and might exhibit more lax dinucleotide sequence specificity(1). Non-CG methylation 

supports the notion that there is some plasticity built in the DNA methylation pattern (9).   

 

5-methyl-cytosine could be further modified by hydroxylation (12) in a reaction catalyzed by 

TET enzymes(13), which could then be further carboxylated(14). There is no known 

mechanism for inheritance of 5-hydroxymethyl cytosine. 



 
DNA methylation patterns and cellular identify of DNA 
DNA methylation is part of the DNA molecule chemistry. It is thus clearly differentiated 

from other epigenetic mechanisms chromatin modification and noncoding RNA. Cell specific 

DNA methylation patterns that are formed during cellular differentiation by innate 

developmental programs were described almost two decades ago(15, 16) and were recently 

confirmed by whole genome methylome mapping(8) (Fig. 1). Thus, the DNA molecule has 

two identities, the ancestral identity encoded in the sequence and the cell specific identity 

encoded in the pattern of DNA methylation.   

 

DNA methylation in critical regulatory regions is involved in regulating gene expression. 

There is an overall inverse correlation between DNA methylation in regulatory regions of 

genes and gene expression, which was discovered in the early eighties(2, 15) and was 

confirmed by whole genome approaches(17). 

 

An inverse situation exists in gene-bodies. Increased methylation was observed in the gene 

bodies of active genes (8, 17) (18) (19).  

 

The role of modified 5-methyl cytosine in controlling gene expression is unclear. Several 

studies suggest that modified methylcytosines are intermediates in active demethylation 

pathways(14, 20, 21) but data suggests that, at least in some tissues, 5-

hydroxymethylcytosine (5hmC) is maintained stably in the genome and might play a 

functional role in regulating genome function(12, 22). Genome-wide mapping of 5hmC in the 

brain suggests that 5hmC is mostly found in genes, is enriched at promoters and in intragenic 

regions (gene bodies). Presence of 5hmC peaks at transcription start sites did not correlate 

with gene expression levels, but its presence in gene bodies was positively correlated with 

gene expression(23). Genome wide mapping of 5-hmC and TET1, showed association with 

both active or inactive chromatin marks(24, 25).  There is good reason to suspect that 

modified methylated cytosine further refines the gene silencing signal of 5-methylcytosine.  

 

The most established role of DNA methylation is in regulation of promoter activity(26). At 

least two mechanisms are well established for inhibition of gene activity by DNA 

methylation. A methyl group positioned in a recognition element for a transcriptional factor 

can block binding of the transcription factor to the promoter(27, 28). Alternatively, 
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methylated DNA attracts methylated DNA binding proteins (MBD) such as the Rett 

syndrome protein Methyl CpG binding protein 2 (MeCP2), which in turn precipitate an 

inactive gene-silencing chromatin configuration through recruitment of chromatin silencing 

proteins(29) (Fig. 2).  

 

DNA methylation and cellular differentiation and the impact of the early 
environment 
Faithful epigenetic inheritance is critical for DNA methylation to play a role in cellular 

differentiation as maintenance of the differentiated state requires accurate copying of the 

DNA methylation pattern. This might imply that changes in DNA methylation should not 

occur outside the context of rigid and innate program of generating cell type identity. If 

indeed DNA methylation is solely defined by innate programs, there is still room for external 

processes to affect it accidentally and stochastically through activating or inhibiting the 

enzymes that either add or remove DNA methylation patterns during gestation.  

 

For example, the impact of diet, or stress during gestation on DNA methylation could be 

caused by inhibiting or activating DNA methylation/demethylation enzymes at the time when 

the DNA methylation pattern is laid down.  The Jirtle lab demonstrated an effect of maternal 

diet during gestation on the agouti color phenotype in viable yellow agouti (A(vy)) mice, 

which was mediated through methylation of a transposable element in the A(vy) transposable 

element.(30).  The impact of methyl-rich diets during gestation or the impact of other 

chemicals such as bisphenol B during gestation that inhibit DNA methylation (31) could be 

explained just as a stochastic chemical interference in enzymatic DNA methylation reactions 

that are actively laying down the DNA methylation pattern during embryogenesis. 

 

Hypothesis: DNA methylation is a genome adaptation mechanism that confers 
environmental-exposure specific identity to DNA 
DNA methylation is a mechanism for diversification of DNA identity by providing within the 

same chemical entity two layer of information; the ancestral identity encoded in the sequence 

and the cellular identity encoded in the DNA methylation pattern. It is hypothesized here that 

similar to the alterations in DNA methylation that occur in response to innate signals during 

development, external signals triggered by the environment can modulate the DNA 

methylation pattern to generate differential “environmental-history” DNA methylation 

identities.  This process could occur at different time points in life and act at different time 



scales ranging from proximal physiological time scale to life-long as well trans-generational 

time scales if DNA methylation is reversible after birth (32).   

 

The impact of early life experience on life-long health and behavior trajectories 
The social and physical environment influence human development after birth and during 

different life cycle stations. For example, social adversity early in life has a profound impact 

on life-long physical health and behavior (33-35).  Maternal behavior plays a cardinal role in 

the behavioral development of mammals.  Models of maternal deprivation in primates and 

rodents and natural variation in maternal care in rodents have demonstrated the significant 

impact of maternal care on a panel of phenotypes in the offspring that last into adulthood (36, 

37).    

  

Hippocampal Glucocorticoid receptor (GR) controls the negative feedback of the HPA axis 

by glucocorticoids. In the rat, the adult offspring of mothers that exhibit increased levels of 

pup licking/grooming (i.e., High LG mothers) over the first week of life show increased 

hippocampal (GR) expression, enhanced glucocorticoid feedback sensitivity, decreased 

hypothalamic corticotrophin releasing factor (CRF) expression and more modest HPA stress 

responses compared to animals reared by Low LG mothers (38, 39). These effects could be 

triggered also by cross-fostering of a Low LG offspring with High LG mother, suggesting 

that they are not germ line transmitted supporting a nonDNA sequence mediated mechanism. 

Similarly in non human primates maternal deprivation early in life results in profound 

phenotypic effects later in life (40-43).  These studies provide strong evidence that early life 

experience could shape life-long phenotypes. We proposed that DNA methylation mediated 

this environmental -responsive phenotypic variation by conferring environmental-exposure 

identities to similar DNAs?    

  

A dynamic DNA methylation pattern; reversibility of DNA methylation in 
postmitotic tissue 
The main question is whether DNA methylation is reversible after birth (44)? Is the pattern of 

DNA methylation that is fashioned by innate developmental processes a final state or is it in a 

dynamic state, which is responsive to external signals? 

 

Although there was a resistance in the field to accept the possibility of a reversible DNA 

methylation in postmitotic tissues there is significant evidence for this hypothesis (45-49). It 

has been shown that brain extracts are capable of demethylating “naked” DNA substrate in 
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vitro (10, 50, 51). The strongest evidence for dynamic methylation-demethylation comes 

from several studies showing active demethylation in postmitotic neurons (52-55). 

Conditional knock out of DNMT1 in postmitotic neurons results in DNA demethylation 

suggesting the presence of demethylation activity in nondividing neurons which is critical for 

a dynamic methylation pattern in the brain (56).   

 

The main issue in the field remains however whether DNA methylation is truly a reversible 

reaction that involves removal of the methyl moiety and its release (44, 57) or whether DNA 

demethylation requires excision of the methylated base and its replacement by an 

unmethylated cytosine through a process of DNA repair (58, 59). First, DNMTs were 

proposed to deaminate the methyl cytosine to thymidine creating a C/T mismatch, which is 

then corrected by a mismatch-repair mechanism (60). Second, Growth arrest and DNA-

damage-inducible, alpha (GADD45A), a DNA repair protein was proposed to participate in 

catalysis of active DNA demethylation by an unknown DNA repair based mechanism (61). 

However, this was disputed (62). Other studies have suggested involvement of GADD45B in 

demethylation in the brain (63). Third, a complex sequence of coupled enzymatic reactions of 

deamination and mismatch repair were shown to be involved in demethylation in zebrafish: 

activation-induced cytidine deaminase (AID, which converts 5-meC to thymine), a G:T 

mismatch-specific thymine glycosylase methyl-CpG binding domain protein 4 (MBD4) and 

repair promoted by GADD45A (64). AID has been implicated in the global demethylation in 

mouse primordial germ cells as well (65). An open question is the role of the newly 

discovered modification 5-hydroxymethylcytosine as a potential intermediate in the DNA 

demethylation reaction (12).  Recent data suggest that TET1 the enzyme that catalyzes the 

hydroxylation of 5-methylcytosine is present and required for stem cell maintenance of inner 

cell mass specification (66) and for activity driven demethylation in neurons(20). 5-

hydroxymethylation catalyzed by TET1 is followed by deamination of the 5-

hydroxymethylated base by AID/APOBEC (apolipoprotein B mRNA-editing enzyme 

complex) family of cytidine deaminases and base excision repair enzymes replace the 

deaminated base with an unmethylated cytosine (BER)(20). More recently it has been 

proposed that 5-hydoxymethylcytosine is further carboxylated and this serves as a substrate 

for yet unknown decarboxylases that release the entire modified methyl moiety (14) (Fig. 3 

for model).   

 

TET3 was recently shown to be required for the programmed demethylation of the paternal 



genome after fertilization including the demethylation of the paternal oct4 and nanog genes 

(67). However it is becoming clear that TET3 is not involved in an enzymatic process of 

demethylation during programmed DNA demethylation during early embryogenesis, but 

rather in marking certain sequences for escaping DNMT catalyzed DNA methylation during 

cell division (68), possibly since 5-hydroxymethylcytosine is a poor template for DNMT1 

(69). It is also possible that TET3 acts by a 5-hydroxymethylcytosine independent 

mechanism to “mark” certain sequences either directly or “indirectly” through recruitment of 

other chromatin modification enzymes. The global programmed  “demethylation” of the 

paternal epigenome few hours following fertilization has been the best-known example of 

global “active-demethylation” during embryogenesis (70). However, the experimental 

evidence for this “active global demethylation” was based on reduction in immunostaining 

with an antibody directed against 5-methylcytosine (70). This antibody stains 5-

methylcytosine selectively but not 5-hydroxymethylcytosine. The global “demethylation” 

appears to be just a further modification of the methylated cytosine by hydroxylation rather 

than loss of the methyl moiety (71). Interestingly, 5-hydroxymethylcytosine is maintained for 

a considerable time during early embryogenesis (71) and is gradually diluted through 

synthesis of DNA that is not methylated by the maintenance DNMT(68). These data shed 

serious doubt on the possibility that TET enzymes participate in an active process of 

enzymatic DNA demethylation during early embryogenesis. The role of TET enzymes and 5-

hydroxymethylcytosine might be mainly as a variation on the methyl-cytosine mark. This 

could also lead to loss in DNA methylation in mitotic cells in absence of a mechanism to 

copy modified methyl moieties during cell division.  

 

Interestingly, TET2 catalytic mutations are frequently observed in myeloid cancers such as 

myelodysplastic syndromes (MDS), myeloproliferative neoplasms (MPN), MDS/MPN 

overlap syndromes including chronic myelomonocytic leukemia (CMML), acute myeloid 

leukemias (AML) and secondary AML (sAML) (72‐74). If enzymatic conversion of 5-

methylcytosine to 5-hydroxymethylcytosine by TET enzymes were required for active 

enzymatic DNA demethylation, one would expect that a catalytic mutant in TET2 would 

cause loss of 5-hydroxymethylcytosine as well as DNA hypermethylation. Interestingly, 

although samples from patients with TET2 mutations displayed as expected low levels of 

5hmC in genomic DNA compared to bone marrow samples from healthy controls, the 

samples with low 5hmC were hypomethylated and not hypermethylated relative to controls 
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(74). This data is again inconsistent with the hypothesis that 5-hyxroxymethylation catalyzed 

by TET enzymes serves as an intermediate in active DNA demethylation. 

 

Notwithstanding the precise biochemistry, the fact that DNA methylation is reversible even 

in postmitotic tissue provides justification for examining the possibility that DNA 

methylation patterns are adapted to environmental signals including social signals in early life 

(Fig. 4). 

 

DNA methylation association with early life social experience; lessons from 
candidate genes 
The first line of data that showed association of early life experience with long-term changes 

in DNA methylation came from a candidate gene approach. Weaver et al. showed that 

variations in maternal care result in differences in DNA methylation and histone acetylation 

in the GR/NR3C1 gene encoding the glucocorticoid receptor (GR exon 17 promoter) that 

emerge early in life and remain stable into adulthood (52).  Cross fostering experiments 

showed a causal relationship between maternal care and the DNA methylation differences 

and reversal of the phenotypes with epigenetic drug treatments supported a causal 

relationship between DNA methylation differences and phenotypic variation (75, 76). 

Exposure of infant rats to stressed caretakers that displayed abusive behaviour produced 

persisting changes in methylation of bdnf gene promoter in the adult prefrontal cortex (77). 

Similarly, early-life stress (ELS) in mice caused sustained DNA hypomethylation of an 

important regulatory region of the arginine vasopressin (AVP) gene (78). 

 

Although it is impossible to provide causal evidence for early life experience altering DNA 

methylation states in humans as it is ethically unfeasible to randomize in humans early life 

abuse, it is possible to associate DNA variations with differences in early life experience. 

The state of methylation of rRNA gene promoters and NR3C1 promoter in the hippocampus 

were examined in a cohort of suicide victims in Quebec who were abused as children and 

their control group. Ribosomal RNA (rRNA) forms the skeleton of the ribosome, the protein 

synthesis machinery. We have previously demonstrated a critical role for DNA methylation 

in regulating expression of rRNA genes (79). Our results showed that the suicide victims 

who experienced childhood abuse had higher overall methylation in their rRNA genes and 

expressed less rRNA in a brain region specific manner (80). We also examined in this cohort 

the same promoter of NR3C1 gene that was affected by maternal care in rats. Site-specific 



differences in DNA methylation in the NR3C1 exon 1f promoter and its expression were 

detected between suicide completers who had reported social adversity early in life and 

suicide completers who did not experience social adversity early in life (81).    

 

Epigenetic modulation of other candidate genes was implicated in suicide; the Gamma-

aminobutyric acid A receptor alpha 1 subunit (GABRA1) promoter (82) within the frontopolar  

cortex (83) and Tropomyosin-related kinase B (TRKB) in the frontal cortex of suicide 

completers (84). It is unknown yet whether these changes in DNA are also associated with 

early life adversity. 

 
DNA methylation association with early life social experience; involvement of 
broad genomic regions in a clustered and organized response 
Genes don’t act independently but through functional gene circuitries. In addition, the 

phenotypic response to early life adversity involves multiple phenotypes suggesting a system 

wide response. If indeed the response of DNA methylation states to early life adversity is an 

adaptation rather than a stochastic disruption, it should involve an organized change in DNA 

methylation across the genome (Fig. 5). We tested this hypothesis in several studies. All 

studies point to the conclusion that the impact of early life adversity on the epigenome is 

broad and that it involves multiple systems and is not limited to the brain. This has diagnostic 

and mechanistic implications. It supports the idea that it might be worthwhile to study 

behavioral epigenetics in peripheral tissues. We have documented several examples that 

support this hypothesis.  

  

First, natural variations in maternal care in the rat are associated with coordinate changes in 

DNA methylation, chromatin, and gene expression spanning over a hundred kilobase pairs. 

Interestingly, a chromosomal region containing a cluster of the PROTOCADHERIN α, -β, 

and -γ (Pcdh) gene families implicated in synaptogenesis show the highest differential 

response to maternal care. The entire cluster reveals epigenetic and transcriptional changes in 

response to maternal care (85).  Second, we showed that a similar pattern of response to 

childhood abuse is associated with DNA methylation differences throughout the genomic 

region spanning the six and a half million base-pair region centered at the NR3C1 gene in the 

hippocampus of adult humans suggesting evolutionary conservation of this adaptation 

(Suderman et al., submitted 2011). Third, similar to the rat and human, the changes in DNA 

methylation associated with differences in rearing in rhesus monkeys are widespread in the 

genome, that they are not limited to the brain and occur in T cells as well (Provencal, 
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Tremblay, Suomi et al., submitted 2011). Fourth, we have initiated a study of the impact of 

socioeconomic positioning on DNA methylation that examined blood DNA from the British 

birth cohort of 1958. This study detected a signature of DNA methylation that is associated 

with early life adversity (86) supporting the hypothesis that social environment DNA 

methylation signatures are found system wide and could be examined in peripheral blood 

cells.  

 

Three other studies have demonstrated that epigenetic effects associated with behavioral 

adversity could be detected in blood cells. First, the NR3C1 promoter was more methylated 

in lymphocytes in newborns exposed prenatally to maternal depression than control 

newborns (87). Second, Pituitary adenylate cyclase-activating polypeptide (PACAP), a 

protein known to be involved in stress response in the pituitary was found to be differentially 

methylated in peripheral blood cells in humans with post traumatic stress syndrome (88). 

Third, telomere lengths differences were identified between orphans in the Bucharest Early 

Intervention Project who were placed under high quality foster care compared with those 

subjected to continued care in institutions(89). As discussed above, a long line of data have 

established that the physiological response to early life socio-economic adversity is not 

limited to the brain (34, 90, 91).  There is no reason therefore to believe that DNA 

methylation changes in response to adversity should not occur in the periphery as well as the 

brain.  

 

Summary 
The scope of involvement of DNA methylation in long-lasting regulation of genome function 

is wider than has originally been thought. DNA methylation acts as a mechanism for 

providing differential identities to similar DNA sequences. Originally, it was believed that 

such a mechanism is exclusive for cellular differentiation when an identical genome acquires 

different identities expressing different phenotypes. We propose that DNA methylation can 

also act as a mechanism for adaptation of the genome to different environments. There is 

data in both animals and humans that supports this hypothesis.  However, the mechanisms 

that mediate between external social signals and DNA methylation changes that seem to 

cluster across the genome are unknown. Future studies are required to unravel these 

mechanisms. 
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Figure legends 

Figure 1. DNA methylation patterns. The DNA methylation pattern is sculpted during 

gestation by de novo methylation of sites that were not previously methylated ,demethylation 

and maintenance methylation which is accurate copying of the DNA methylation pattern 

during mitosis.  CH3 -methyl moiety; DNMT-DNA methyltransferase. 

 

Figure 2. Mechanisms of silencing of gene expression by DNA methylation. Active genes 

are characterized by association with acetylated histones and lack of methylation in 

promoters. A methylation event can either disrupt binding of transcription factor to their 

recognition sequence (upper right panel) or recruit methyalted binding proteins which in turn 

recruit chromatin modifying enzymes resulting in changes to chromatin modification and 

silencing of gene expression. 

 

Figure 3. DNA methylation reactions. DNA is methylated by a transfer of a methyl moiety 

from the methyl donor S-adenosyl-L-methionine (AdoMet) to the 5’ position on a cytosine 

ring by DNA methyltransferases (DNMT) releasing S-adenosyl-homocysteine (AdoHcy). 

Several demethylation reactions were suggested. Direct demethylation by a demethylase 

enzyme (dMTase) (MBD2 is a putative candidate) could release a methyl moiety (CH3) in 

the form of either methanol or formaldehyde. Alternatively, the methyl cytosine ring could be 

modified by either deamination catalyzed for example by AID or hydroxylation of the methyl 

moiety catalyzed by TET1. The modified base is then excised by glycosylases and repaired. 

Alternatively, the bond between the sugar and the base is cleaved (by glycosylases such as 

MBD4 or 5-methylcytosine glycosylase 5-MCDG) followed by repair. Repair proteins shown 

to be associated with demethylation were GADD45(a and b).  

 

Figure 4. The dynamic relationship between DNA methylation and chromatin structure, 

a model. The DNA methylation and chromatin modification equilibrium is laid down during 

embryogenesis. However, the DNA methylation state is not final. A balance of DNA 

methylation and demethylation activities as well as chromatin activating modifications are 

dynamically maintained. The chromatin modification states and DNA methylation states are 

interrelated. Signals from the environment can tilt the DNA methylation balance to either 

increased or decreased methylation. 

 



Figure 5. DNA methylation a system wide genome adaptation mechanism. Signals from 

the social, bio-environment and physical environment act on signaling pathways to trigger 

changes in DNA methylation in multiple tissues and across many regions in the genome to 

adapt the genome and the phenotype to the anticipated life-long environment. A misfit 

between the environment and programmed DNA methylation could result in disease.    
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