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Review

Bioelectromagnetics in Morphogenesis

Michael Levin*
Department of Cytokine Biology,The Forsyth Institute, Boston, Massachusetts

Understanding the factors that allow biological systems to reliably self-assemble consistent, highly
complex, four dimensional patterns on many scales is crucial for the biomedicine of cancer,
regeneration, and birth defects. The role of chemical signaling factors in controlling embryonic
morphogenesis has been a central focus in modern developmental biology. While the role of tensile
forces is also beginning to be appreciated, another major aspect of physics remains largely neglected
bymolecular embryology: electromagnetic fields and radiations. The continued progress ofmolecular
approaches to understanding biological form and function in the post genome era now requires the
merging of geneticswith functional understanding of biophysics and physiology invivo. The literature
contains much data hinting at an important role for bioelectromagnetic phenomena as a mediator
of morphogenetic information in many contexts relevant to embryonic development. This review
attempts to highlight briefly some of themost promising (and often underappreciated) findings that are
of high relevance for understanding the biophysical factors mediating morphogenetic signals in
biological systems. These data originate from contexts including embryonic development, neoplasm,
and regeneration. Bioelectromagnetics 24:295–315, 2003. � 2003 Wiley-Liss, Inc.

Key words: electromagnetic fields; embryology; development; regeneration; cancer;
ultraweak photons; self-assembly

INTRODUCTION

One of the most interesting aspects of biology
is morphogenesis: the ability of living systems to self-
organize simultaneously on many scales to produce the
exquisitely complex pattern which underlies function.
Molecular genetics and biochemistry have focussed on
unraveling the role of biochemical messengers in this
process, and are beginning to understand the role of
tensile forces and adhesion. However, one major aspect
of biophysics remains largely neglected by modern
embryology: electromagnetic fields and radiations. The
continued progress of molecular approaches to under-
standing biological form and function in the post-
genome era requires the functional understanding of
biophysics and physiology.

The literature contains much data hinting at an
important role for bioelectromagnetic phenomena as
a mediator of morphogenetic information in many
contexts relevant to embryonic development. However,
many of these papers were published in journals not
indexed in Medline or other biomedically focussed
databases and were published prior to when it was
feasible to place full content or even abstracts online.
Thus, much of this work remains unknown to re-
searchers in the field. This review attempts to hig-
hlight some of the most promising (and often little
appreciated) findings that are of high relevance for
understanding the biophysical factors mediating mor-

phogenetic signals in biological systems. Papers were
selected based on quality, importance of result, or in
some cases uniqueness individual reports which have
not been followed up but may indicate extremely pro-
mising and novel findings.

For reasons of brevity, well known and popular
aspects of bioelectromagnetics will not be addressed.
These include ionic conduction in neurons, detection
of physiological electric and magnetic fields via ECG
and SQUID, light, ionizing radiation, and the mountain
of literature on controversial epidemiological claims
of human disorders caused by exposure to fields of
technological origin (extremely low frequency (ELF)
and microwave). The fundamental biophysics of

�2003Wiley-Liss, Inc.

——————
Grant sponsor: American Cancer Society; Grant number: RSG-02-
046-01; Grant sponsor: American Heart Association; Grant
number: 0160263T; Grant sponsor: Basil O’Connor fellowship
from The March of Dimes; Grant number: 5-FY01-509; Grant
sponsor: Harcourt General Charitable Foundation.

*Correspondence to: Dr. Michael Levin, Department of Cytokine
Biology, The Forsyth Institute, 140 The Fenway, Boston, MA
02115. E-mail: mlevin@forsyth.org

Received for review 14 September 2002; Final revision received
12 December 2002

DOI 10.1002/bem.10104
Published online in Wiley InterScience (www.interscience.wiley.com).



electromagnetic fields is likewise too vast a subject to
cover here.

Instead, this survey presents a terse compilation of
important but often little known ‘‘classical’’ andmodern
studies relevant to the idea that electromagnetic fields
are carriers of morphogenetic information. The reports
listed under the different headings often vary greatly
with respect to the depth in which the phenomenon is
characterized and thus, with respect to the degree to
which the putative role of EM fields is proven. The
individual cases discussed below most often concern
static (DC) electric fields, but sometimes involve mag-
netic fields, electromagentic radiation, or ultraweak
photon emission. While being examples of ‘‘electro-
magnetism,’’ each type of phenomenon clearly involves
a different set of physical properties and may involve
completely different biological mechanisms. The type
of bioelectromagnetic event is thus specified in
each case.

Many properties of biological systems, such as
polarity, long range spatial order, and positional infor-
mation are present in the physics of electromagnetic
fields. There is suggestive evidence that endogenous
DC electric fields, magnetic fields, and ultra-weak
photon emission are part of the medium by which
information flows in biological systems. To begin to set
the context for these studies, it is helpful to consider
more generally the range of applications of bioelec-
tromagnetics in biology andmedicine [O’Connor et al.,
1990; Basset, 1993; Ho et al., 1994; Pilla and Markov,
1994].

In order to give a flavor of the ubuiqitous presence
of EMfields in biology, Table 1 presents some examples
of bioelectromagnetics in a variety of areas. It is seen
that EM phenomena manifest at many levels of
organization and are involved in a wide range of
bioprocesses (Table 2). Organisms from bacteria to
mammals are all sensitive toEMfields [Gould, 1984].A

TABLE 1. Applied Fields Affect a Plethora of Biological Processes and Systems

Type of phenomenon Specifics Reference

EM field effects on
biochemical processes

ELF fields affect enzyme reactions Moses and Martin, 1993; Holian et al., 1996

Sensitivity to EM fields Mud snail detects electric fields Webb et al., 1961
in animals and plants Termites detect weak AC magnetic fields Becker, 1976

Humans detect magnetic fields Baker, 1984; Bell et al., 1991
Magnetotropism in plants Audus, 1960; Barnothy, 1964
Mollusk neuron detects GMF Lohmann et al., 1991

Effects of applied fields
on neurophysiology

ELF AC magnetic fields cause calcium
efflux in brain tissue

Blackman, 1984; Blackman et al., 1988

Weak AC magnetic fields alter analgesia Kavaliers and Ossenkopp, 1986a,b
DC magnetic field alters EEG Kholodov, 1966

EM fields and higher-level
neurobiology and behavior

Animals avoid certain types of fields Sheppard and Eisenbud, 1977; Kermarrec, 1981;
Rai, 1986

Applied fields alter behavior Persinger, 1974a; Horn, 1981
Applied fields affect learning rates in
mammals

Levine et al., 1995; Lai et al., 1998

Depth of hypnosis correlates with electric
measurements on skin

Ravitz, 1959; Friedman et al., 1962; Ravitz, 1962

Applied fields affect several
systems in human body

Reproductive effects Krueger et al., 1975; Brewer, 1979

Skeletal system; applied fields used
clinically to improve bone growth

Bruce et al., 1987; McCleary et al., 1991; Nagai
and Ota, 1994

Circadian cycle changes McBride and Comer, 1975; Brown and Scow,1978;
Scaiano, 1995

Immune system effects Smialowicz, 1987, review
Applied fields affect cell Cell motility and galvanotaxis McCaig and Zhao, 1997, review
behavior and parameters Applied fields can cause differentiation and

even dedifferentiation!
Harrington and Becker, 1973; Chiabrera et al., 1979,
Chiabrera et al., 1980; Grattarola et al., 1985;
Robinson, 1985

Changes in growth rate Patel et al., 1985; Ross, 1990
Transcription and translation rates are all
altered by field exposure

Liboff et al., 1982; Goodman et al., 1985; Goodman
and Henderson, 1988; Greene et al., 1991; Lai and
Singh, 1997

ELF fields and ionizing
radiation

Exposure to ELF fields mitigates effects
of ionizing radiation

Barnothy, 1963a; Amer and Tobias, 1965;
Zecca et al., 1984
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review of EM sensors in living systems is presented in
Tenforde [1989]. Human beings probably detect the
Earth’s geomagnetic field (GMF) via the pineal gland,
which may transduce weak magnetic fields into
neuronal activity [Semm et al., 1980; Olcese et al.,
1988; Olcese, 1990].

The Earth’s GMF and geoelectric field (GEF)
carry information and may be a fundamental part of
large scale information flow in the biosphere [Cole and
Graf, 1974] (Table 2). Indeed, shielding from the
Earth’s fields results in a wide range of patterning
defects and physiological alterations in plants and
animals [Conley, 1970; Brown and Chow, 1973].
Geological changes in GMF have been linked to
extinctions [Harrison and Funnel, 1964; Watkins and
Goodell, 1967; Hays, 1971], as well as aspects of the
large scale evolutionary course of a number of species
[Simpson, 1966; Kopper and Papamarinopoulos, 1978;
Ivanhoe, 1979, 1982].

Bioinformation transfer through the electromag-
netic spectrum figures prominently in ecology and
animal communication [Presman, 1970; Becker, 1976].
At the level of the organism, the idea that the morpho-
logy (embryonic geometry) of organisms is mediated,
in part, by the action of endogenous electromagnetic
fields, has been proposed by a number of workers. Two
of the most prolific were Lund [1947] and Burr [Burr
et al., 1937; Burr and Hovland, 1937a; Burr et al.,
1938c]. Both labs conducted studies on a wide range of
both plant and anmal organisms; they showed correla-
tions of changes in natural electric fields with develop-
ment and regeneration, and demonstrated for the first
time that externally applied electric fields can affect
morphogenesis of various organisms.

During embryogenesis, a developing organism
must achieve, within fairly tight parameters, a very
particular morphology of external form and internal
organization, from organelles all the way to the whole
organism. The process of regeneration illustrates the
maintenance and restoration of thatmorphology in light
of environmental injury. Finally, to complement re-

ductive studies on oncogenes and the molecular basis
of cellular transformation, cancer can be viewed as a
disease of geometry. Tumor tissue results from growth,
which is not patterned appropriately, because it is
unable to perceive or execute morphogenetic cues. The
studies of the roles of EM fields in these process which
are cited below generally fall into three classes of
evidence: (1) characterization of existing electric or
magnetic field within organisms and showing that their
parameters correlate with biological patterning events,
(2) demonstrating the effects of exogenous (applied)
fields of correct physiological parameters on organ-
isms, organs, tissues, or cells, which suggest that these
systems are responsive to electromagnetic signals (this
is analogous to a ‘‘gain of function’’ experiment in
molecular embryology), and (3) examination of the
consequences of abrogation of a specific subset of the
endogenous EM fields in a particular context (the ‘‘loss
of function’’ experiment). Together, these three lines
of investigation can demonstrate a functional, causal
relationship and thus show that EM fields are an in-
tegral part of information flow in some morphogenetic
process.

PATTERNING FIELDS IN REGENERATION

Regeneration is a special case of morphogenesis,
since it involves the recreation of an existing structure,
in the context ofmature surrounding tissue. In replacing
a lost body part, embryonic developmentalmechanisms
may be recruited to restore pattern. Some animals nor-
mally exhibit a striking degree of regeneration, ranging
from tails or limbs in the case of some amphibians
[Tsonis, 1983; Brockes, 1998] to regenerating a com-
plete animal from a small piece of tissue in the case of
planarian flatworms [Bröndsted, 1969; Agata and
Watanabe, 1999]. It is important to note that even
animals which are not normally known for their re-
generative ability can regenerate in special cases.
For example, human children will regenerate severed
fingertips if the stump is not pulled overwith skin after a

TABLE 2. Importance of the Earth’s Fields for Biosystems

Type of phenomenon Specifics Reference

GMF & GEF state correlated with Correlation with heart attacks Brown et al., 1979; Malin and Srivastava, 1979
biological parameters Lunar cycle correlates with response

to magnetic field in animals
Brown et al., 1955b; Brown and Webb, 1961;
Brown and Barnwell, 1961b

Correlation with psychiatric
hospital admissions

Friedman et al., 1963

Effects caused by shielding from GMF Anomalous root growth Shultz et al., 1967
Altered circadian rhythms Wever, 1968; Borodin and Letiagin, 1990
Teratological effects on embryonic
development

Shibib et al., 1987; Asashima et al., 1991

Altered termite building behavior Becker, 1976
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clean amputation [Illingworth, 1974; Illingworth and
Barker, 1980; Borgens, 1982a]. The difference between
regenerating and nonregenerating systems has been
suggested to depend upon the bioelectrical properties of
the tissue (see below).

The regenerating limb system in amphibians has
an electrical component, including electrically medi-
ated dedifferentiation and axial control [Becker and
Murray, 1967; Becker, 1972a; Becker, 1984; Borgens
et al., 1979d]. This model is supported by the
observations that (1) strong endogenous EMfields exist
in regenerating limbs, (2) there are differences between
regenerating and nonregenerating animals’ field char-
acteristics, most often consisting of variations in resis-
tance and efflux currents, (3) disruption of endogenous
fields by shunting inhibits regeneration, and (4) appli-
cation of exogenous fields is able to alter regeneration
and even induce it in normally nonregenerating species.
These data are summarized in Table 3.

One good example of bioelectrical control of
regenerationwas described in the context ofwhole body
regeneration in the segmented earthworm [Moment,
1946, 1949; Kurtz and Schrank, 1955]. Wherever the
worm is cut, new segments are added until there are
about 90 segments. The number of segments appears to
be controlled by electrical potential. Each segment has
a voltage, and segments are added until the overall
voltage totals the correct endogenous value for a full
length worm.

One of themost fruitful contexts in which to study
electric phenomena in regeneration is that of the ver-
tebrate limb. When a limb is amputated, an injury
current appears, which is thought to induce dediffer-
entiation into or activation of blastema cells. It further
serves to pattern the limb forming from these cells by
attracting neuronal growth and providing spatial in-
formation for cells migrating into the new limb. An
exciting series of experiments has shown that electrical

fields can induce regeneration in normally nonregener-
ating species [Smith, 1974]. For example, minute,
steady electrical fields imposed within forelimb stumps
of adult frogs initiated limb regeneration [Smith, 1979].
Becker and Sparado [1972; Becker, 1972a] report
partial limb regeneration in mammals using an applied
electric field.

Shunt experiments, disturbing the natural fields,
provide away to test the causal importanceof thenatural
currents in regeneration. Short circuiting the endogen-
ous fields by means of ionic depletion of the medium,
skin flaps, or with conducting wires, results in a cessa-
tion of regeneration [Borgens et al., 1979c,d; Borgens,
1982]. This is evidence that the currents are of prime
importance in regeneration. It has been suggested that
frogs do not regenerate limbs because they possess a
very loose skin which overlays large subdermal lymph
spaces; urodeles (regenerating salamanders) do not.
These lymph spacesmay serve as shunts (low resistance
paths) which short circuit the current, thus interfering
with the currents’ normal role in regeneration [Borgens
et al., 1979b]. Understanding the endogenous basis
of bioelectrical controls of regeneration has great
potential as a medical tool to augment regeneration
[Borgens, 1999; Borgens et al., 1999; Moriarty and
Borgens, 2001].

PATTERNING FIELDS IN EMBRYONIC
DEVELOPMENT

Developing embryos are the paradigmatic case of
unfolding and elaboration of complex, consistent, four-
dimensional pattern and form. Embryonic morphology
is epigenetically derived, the results of independent
units following local, small scale rules, but some
contexts suggest nonlocal (or field) properties. Elec-
trical activity due to ion channel function has been
extensively studied in the function and structure of the

TABLE 3. Bioelectric Fields and Regeneration

Type of phenomenon Specifics Reference

Natural fields associated with
regenerating systems

Field peaks correlate with points of highest
regenerative ability

Mathews, 1903

Characteristic fields accompany
regeneration events

Rehm, 1938; McGinnis and Vanable, 1985

Animals which regenerate produce fields
upon amputation; animals which
don’t regenerate do not

Borgens et al., 1979b; Harrington et al., 1981

Augmenting regeneration by
exogenous applied fields

Spinal cord neuronal regeneration Borgens et al., 1986, 1987b, 1990, 1999;
Moriarty and Borgens, 2001

Limb regeneration Becker, 1972b; Becker and Sparado, 1972;
Smith, 1974, 1979; Harrington et al., 1974

Inhibiting regeneration by
disrupting endogenous fields

Limb regeneration is inhibited by shunts Borgens et al., 1979c,d; Borgens, 1982b;
Jenkins et al., 1996
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nervous system. However, there exists a large but often
little recognized literature that supports a regulative role
for endogenous ion flows and standing (DC) potential
differences in many aspects of embryonic morphogen-
esis unrelated to the function of neurons [Lund, 1947;
Jaffe and Nuccitelli, 1977]. The discovery of strong
endogenous DC electric fields within living systems
have been augmented by functional experiments sug-
gesting that these fields have a causal role in physiology
and development [Jaffe, 1981]. Table 4 summarizes
data showing that endogenous EM fields exist in a

wide variety of developing systems and correlate with
and predict spatio-temporal events in embryonic
development.

Developing systems generally drive steady ion
currents and produce substantial fields within them-
selves; examples include currents that enter the pro-
spective and continuing growth point of several tip
growing plant cells, voltage across the cytoplasmic
bridge between an insect oocyte and its nurse cell,
current traversing a recently fertilized egg from animal
to vegetal pole, and early potentials across embryonic

TABLE 4. Bioelectromagnetic Fields and Embryonic Development

Class Specifics Reference

Endogenous fields exist in
developing organisms

Fields between egg-ovary systems
drive materials into oocyte

Hagiwara and Jaffe, 1979; Jaffe and Woodruff,
1979; Barish, 1983; Nuccitelli, 1983;
Bohrmann et al., 1984; Kunkel, 1986, 1991;
Bowdan and Kunkel, 1990; Kindle et al., 1990;
Diehl-Jones and Huebner, 1993; Anderson
et al., 1994; Kunkel and Faszewski, 1995

Eggs drive currents around themselves Chambers and de Armendi, 1979; Robinson,
1979; Bohrmann et al., 1986a; Bowdan and
Kunkel, 1990; Kindle et al., 1990; Coombs
et al., 1992; Anderson et al., 1994; Kunkel and
Smith, 1994; Kunkel and Faszewski, 1995;
Faszewski and Kunkel, 2001

Mouse and chick embryos drive fields
around themselves

Burr and Hovland, 1937b; Kucera and de
Ribaupierre, 1989; Hotary and Robinson,
1990; Keefe et al., 1995

Neural tube of amphibians generates large fields Nuccitelli, 1984; Hotary and Robinson, 1991
Plants drive a variety of fields which correlate with
sites of growth and also predict growth rates
and dimensions of final shape

Burr, 1942, 1950; Burr and Sinnot, 1944; Burr and
Nelson, 1946; Rosene and Lund, 1953; Stump
et al., 1980; Miller and Gow, 1989; Wang et al.,
1989; Rathore et al., 1991; Messerli and
Robinson, 1997, 1998; Feijo et al., 1999;
Messerli et al., 1999, 2000; Feijo et al., 2001

Fields correlate with Field nodes predict appearance of the head in eggs Burr, 1941a, 1947a
morphogenetic events Fields in amphibians predict many

morphogenetic events
Burr and Hovland, 1937a; Burr and Bullock,
1941; Brick et al., 1974

Electrical characteristics predict
polarity of axial structures such as the nervous
system or the major embryonic axes

Becker, 1960, 1974; Nuccitelli and Wiley, 1985;
Levin and Mercola, 1998, 1999; Levin et al.,
2002

Ion fluxes correlate with cytokinesis and meiosis Wibrand et al., 1992; Honore and Lazdunski,
1993; King et al., 1996

Fields precede and predict appearance of limbs in
several species

Robinson, 1983; Borgens et al., 1983, 1987a;
Borgens, 1984

Suppression of fields can cause standstill of
growth and differentiation

Weisennseel and Kicherer, 1981b

Applied fields alter
morphology of embryos

Magnetic fields can affect embryogenesis of
many species

Kim, 1976; Delgado et al., 1981, 1982; Ubeda
et al., 1985; Juutilainen et al., 1986; Koch et al.,
1993; Levin and Ernst,1997

Electric fields can modify polarity and
break symmetry of many developing embryos

Lund, 1921, 1923; Thomas, 1939; Stern, 1982b

Electric fields of physiological parameters
cause specific changes in morphology

Hotary and Robinson, 1994; Metcalf and
Borgens, 1994;

Borgens and Shi, 1995
Shunting fields in chick embryos results in
morphogenesis defects

Hotary and Robinson, 1992
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epithelia. These currents can be anywhere from 1 to
1000 mA/cm [Jaffe, 1982]; and it is now known that in
several types of embryos, ion channels and pumps are
expressed at very early stages, long prior to the forma-
tion of neurons [Rutenberg et al., 2002]. The presence
of a chick embryo at 24 h of development can be
determined noninvasively by detection of changes in
conductivity and dielectric constant of the very large
egg [Romanoff, 1941]. Several excellent reviews can
be found in Robinson andMcCaig [1980], Jaffe [1982],
Nuccitelli et al. [1986], Stern [1986], McCaig
[1988], Borgens et al. [1989], McCaig and Rajnicek
[1991], Robinson and Messerli [1996], McCaig and
Zhao [1997], and McCaig et al. [2002]. Most impor-
tantly, it is seen that altering the normal EMfield pattern
in developing embryos often has a direct and specific
effect on embryonic morphology [see also Nuccitelli,
1986, 1988].

One example of a very early role of endogenous
ion flux is in the establishment of consistent embryonic
left-right asymmetry. As early as 1956, it was report-
ed that a DC electric current imposed across the
chick blastoderm was able to induce a high number of
cardiac reversals [Sedar, 1956]. Using modern techni-
ques which combined genetics, molecular biology, and
electrophysiology, a number of studies have recently
demonstrated that endogenous differences in ion flux
create voltage gradients across the embryonic mid-
line, which combined with embryo-wide current paths
through gap junctions, serve to direct the sidedness
of asymmetric gene expression and the situs of the
visceral organs [Levin and Mercola, 1998, 1999; Levin
et al., 2002; Albrieux and Villaz, 2000; Pennekamp
et al., 2002]. These mechanisms endogenously occur
as early as the two cell stage in Xenopus and
ascidian embryos and the primitive streak stages in
the chick.

Other contexts for electrical control of morpho-
genesis occur in later development. For example, a
number of functional studies suggest a role for endo-
genous ion currents in limb development in several
vertebrate species; this process is likely to be directly
related to the currents’ roles in limb regeneration
[Robinson, 1983; Borgens, 1984; Altizer et al., 2001].
Voltage gradients associatedwith the neural tube during
neurulation appear to be required for cranial develop-
ment [Shi and Borgens, 1994]. Inhibition of the trans-
neural tube potential [Hotary and Robinson, 1991]
produces a remarkable disaggregation of internal mor-
phology (otic primordia, brain, notochord) coupled
with fairly normal external form in amphibian embryos
[Borgens and Shi, 1995]. Currents arising in the poste-
rior intestinal portal are necessary for tail development
[Hotary and Robinson, 1992] in avians. Lastly, Kþ

currents appear to be required for the function of the
hatching gland in Xenopus [Cheng et al., 2002].

Important advances in merging electrophysiology
datawithmolecular biology have beenmade in a couple
of cases, such as the role of Ca2þ flux in amphibian
neural induction [Moreau et al., 1994; Drean et al.,
1995; Leclerc et al., 1997, 1999, 2000; Palma et al.,
2001]. Transient calcium gradients are generated by
L-type Ca2þ channels during blastula and gastrula
stages, prior to the morphological differentiation of
the nervous system. These fluxes are downstream of
the neural inducer noggin, and over- and underexpres-
sion analysis strongly suggests that the activity of the
L-type channels specifies dorsoventral identity of
embryonic mesoderm.

Because the Naþ/Kþ-ATPase is instrumental
in generating the voltage gradients used by neurons, it
has been studied more than others during development
of a number of organisms, including gastrulating sea
urchins [Marsh et al., 2000] and pregastrulation mam-
malian embryos, where it is thought to be involved
in transtrophectodermal fluid transport [Watson and
Kidder, 1988; Watson et al., 1990; Jones et al., 1997;
Betts et al., 1998]. Similarly, it is likely that the activity
of the Naþ/Kþ-ATPase is involved in gastrulation and
neuronal differentiation in amphibians [Burgener-
Kairuz et al., 1994; Uochi et al., 1997; Messenger and
Warner, 2000]. In ascidians, analysis of developmental
calcium currents [Simoncini et al., 1988] has led to the
identification of a novel role for early expression of
channel and pump mRNAs. The ascidian blastomeres
contain a maternal transcript of a truncated voltage
dependent Caþþ channel that is able to reduce the
activity of the full length form, suggesting that mRNA
expression may be used by embryos as an endogenous
dominant negative to regulate the function of gene pro-
ducts [Okagaki et al., 2001]. Caþþ fluxes also appear to
control morphogenesis in hydra, one of the simplest
multicellular organisms with a clear large scale polarity
[Zeretzke et al., 2002].

A number of important questions remain, con-
cerning the embryonic patterning mechanisms that
rely on electromagnetic fields, as well as the molecular
mechanisms at the cellular level, by which cells trans-
mit and sense electromagnetic signals. Voltage sen-
sitive ion channels can respond to electric gradients,
but their output is ion flux that once again needs to
be transduced to other second messenger systems
[Olivotto et al., 1996]. One such mechanism concerns
the ability of electromagnetic fields to interact with
DNA [Chiabrera et al., 1985; Noda et al., 1987; Matzke
and Matzke, 1996]. By direct influence on chromatin
structure or electrostatic interactions with the nuclear
membrane, endogenous bioelectromagnetic phenom-

300 Levin



ena may alter gene expression and thus modify any
aspect of cell behavior.

One large scale mechanism commonly proposed
for how endogenous currents participate in patterning
events is the providing of spatial guidance cues for cells
[Poo andRobinson, 1977;Robinson andMcCaig, 1980;
Hinkle et al., 1981; McCaig, 1986a,b, 1987, 1988,
1989a,b, 1990a,b; McCaig and Dover, 1991, 1993;
McCaig and Rajnicek, 1991; McCaig and Stewart,
1992; Rajnicek et al., 1992, 1994, 1998; Davenport and
McCaig, 1993; Erskine and McCaig, 1995a,b; Erskine
et al., 1995; Stewart et al., 1995; Britland and McCaig,
1996; McCaig and Erskine, 1996; Stewart et al., 1996;
Zhao et al., 1996a, 1997, 1999; McCaig and Zhao,
1997; Gruler and Nuccitelli, 2000; McCaig et al., 2000,
2002; Wang et al., 2000; Djamgoz et al., 2001]. It
has been suggested that three dimensional systems of
voltage gradients during amphibian neurulation may
be the coordinates for cell migration and morpho-
genesis [Hotary and Robinson, 1994; Shi and Borgens,
1995]. In particular, neural crest cells are galvano-
tactic and are a good candidate for the target of
endogenous electrical cues [Nuccitelli and Erickson,
1983; Gruler and Nuccitelli, 1991]. A related obser-
vation that electric fields are involved in wound
healing [Stump and Robinson, 1986; Rajnicek
et al., 1988], may help explain the impressive
regulatory ability of embryos under experimental
manipulation.

Modernworkhasbegun tomerge cell biologywith
physiology to understand the mechanisms of galvano-
taxis in multicellular systems [reviewed in McCaig and
Zhao, 1997; McCaig et al., 2002]. Recent studies have
characterized the additive effects of pharmacological
agents, e.g., adenyl cyclase activators such as forskolin,
etc., electric field in control of orientation andmigration
rate of Xenopus neurons [McCaig, 1990b; McCaig and
Dover, 1993], and role of inositol phosphate second
messenger system, calcium entry, and microfilament
polymerization in controlling the perpendicular elonga-
tion of embryonic muscle cells exposed to a small
electric field [McCaig and Dover, 1991, 1993; Erskine
et al., 1995; Erskine and McCaig, 1995a; Stewart et al.,
1995]. The roles of growth factor receptors and sub-
strates onwhichcellsmoveare nowknown tobe integral
parts of the process of galvanotaxis in the growth cone
[McCaig and Stewart, 1992; Erskine andMcCaig, 1995b;
Rajnicek et al., 1998a; Zhao et al., 1999; McCaig et al.,
2000] and are suggesting clinical approaches to nerve
regenerationbased on combinationsof chemical growth
factors, haptic conditions, and electric fields. Neurites
are able to detect and integrate at least two morpho-
genetic guidance cues simultaneously [Britland and
McCaig, 1996]. These data can now begin to be in-

corporated into a predictive biophysical model [e.g.,
Gruler and Nuccitelli, 2000].

In contrast to these complex cell types, themecha-
nisms of galvanotropism are also being used to throw
light on novel properties of the bacterial cell wall
[Rajnicek et al., 1994]. Indeed, galvanotaxis was ob-
served in unicellular organisms more than 100 years
ago [Verworn, 1889]. Unlike in other cell types [Poo
and Robinson, 1977; Orida and Poo, 1978; Poo et al.,
1978;McLaughlin and Poo, 1981; Patel and Poo, 1982;
Lin-Liu et al., 1984], lateral electrophoresis of
membrane proteins is unlikely to explain the galvano-
tactic response of amoebae, where modifications of
ionic conditions in the local vicinity of ion channels are
proposed to play a major role [Erskine et al., 1995;
Korohoda et al., 2000].

A few studies [Bohrmann et al., 1986a,b; Bohrmann
and Gutzeit, 1987; Sun and Wyman, 1987; Sun and
Wyman, 1993] failed to confirm the large body of work
showing that endogenous electrophoresis is utilized
to load the oocyte with materials from the nurse
cell sin insect ovarioles (see Table 4). It is possible
that Drosophila oocytes may be too small for proper
analysis via vibrating probe. In contrast, larger poly-
trophic oocytes have been much more amenable to
functional testing of this model [Deloof, 1983; Deloof
and Geysen, 1983; Verachtert and Deloof, 1988, 1989;
Verachtert et al., 1989; Deloof et al., 1990]. These
models are discussed in detail and compared to other
models of pattern formation in insect oocytes in Kunkel
[1991].

In functional experiments, EM fields have been
shown mainly to disturb morphogenesis; at this point,
this is to be expected since our knowledge of endo-
genous field characteristics is inadequate to produce
coherentmorphological changes. Cameron et al. [1993]
provides a brief review of applied EM effects on
embryonic development. One of the best examples
is illustrated by planarians, where a simple head-tail
dipole field was discovered. This field persisted in
cut regenerating segments. Induced reversal of the
field produced reversed anterior-posterior polarity in
fragments, suggesting that the simple field can trans-
mit morphogenetic information [Marsh, 1957, 1969].
Planarian pieces with their original anterior end orient-
ed toward the cathode developed normally, but pieces
oriented toward the anode showed head development
in the tail end, developed two heads, or underwent
reversal of original polarity, depending on current
density [Marsh and Beams, 1957]. This phenomenon
is at once an example of currents’ involvement in
both development and regeneration, since many
planarian species normally reproduce by fissioning
in half.
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PATTERNING FIELDS IN CANCER

Cancer is highly relevant to patterning mechan-
isms because it is, in part, an error of geometry. Tumor
cells grow, migrate, and function without regard for the
orderly structure within which they occur. This is seen
most acutely in teratomas, embryonic tumors which
display extensive differentiation of a number of tissues,
including bone, muscle, and hair, combined with a
complete absence of orderly organization of the whole.
Much modern work has addressed the genetic basis of
cellular transformation, but these reductive studies are
complemented by higher order models which consider
the tumor tissue in its biological context. Based on con-
siderations of ultraweak photon emission (see below),
it has been suggested that cancer is the result of re-
version ofmorphogenetic control to the scale of 10�5m,
the dimension of an autonomous cell [Jezowska-
Trzebiatowska et al., 1986, p. 35]. This results in
growth which lacks the normal spatial and temporal
pattern. Thus, interactions between cancer and tumors
and EM fields are interesting because they may throw
light on normal processes of morphogenesis, as well as
suggest approaches for detecting or preventing neo-
plastic transformation or for controlling the growth of
existing tumors (Table 5).

Aspects of patterning that distinguish tumor cells
from normal tissue include the fine control of pro-
liferation and morphogenesis, which are precisely
orchestrated during embryonic development. It is now
beginning to be appreciated that ion flux and standing

membrane voltage play a prominent role in carcinogen-
esis. Ion channel function controls the proliferation rate
of a number of cells that often form tumors [Cone,
1974a, 1980; Knutson et al., 1997; Kamleiter et al.,
1998; Wang et al., 1998; Dalle-Lucca et al., 2000;
MacFarlane and Sontheimer, 2000; Wohlrab and Hein,
2000; Wohlrab et al., 2000], while membrane voltage
has been shown to control cell fate during differentia-
tion [Jones and Ribera, 1994; Arcangeli et al., 1996].
Tumor cells differ from untransformed cells in terms of
the type of ion channels and pumps they express and in
the resultingmembrane potential of the cells [Martinez-
Zaguilan and Gillies, 1992; Martinez-Zaguilan et al.,
1993; Bianchi et al., 1998]. In human breast cancer
cells, Kþ current controls progression through the cell
cycle [Klimatcheva and Wonderlin, 1999]; activation
of an ATP-sensitive potassium channel is required for
breast cancer cells to undergo the G1/G0-S transition
[Strobl et al., 1995]. Finally, certain channelopathies
result in syndromes associated with cancer such as
the lung cancer seen in Lambert-Eaton syndrome
[Takamori, 1999].

Another recent study showed that ability to
respond to galvanotactic cues correlates withmetastatic
propensity in cell culture, and this process is likely to
be mediated by voltage-gated Naþ channel activity
[Djamgoz et al., 2001]. Hþ pumps called V-ATPases
determine the membrane voltage potential and pH in
many cell types; because these factors are crucial in
controlling protein trafficking, proliferation, and dif-
ferentiation of cells in development, the V-ATPase is

TABLE 5. Bioelectromagnetic Fields and Cancer

Type of phenomenon Specifics Reference

EM characteristics of cancerous
cells and tissues differ from

Appearance of tumors alters electric field of
host organism

Burr et al., 1938a, 1940a; Burr, 1941b, 1952;
Langman and Burr, 1949

those of normal tissue Differences in DC electric fields of
tissue itself

Burr and Lane, 1935; Burr, 1952; Marino et al.,
1994b

Differences in ultraweak photon emission Pyatenko and Tarusov, 1964; Scholz et al.,
1988; Grasso et al., 1992; van Wijk and
van Aken, 1992

Difference in magnetic field susceptibility Senftle and Thorpe, 1961; Kim, 1976
Cancer cells are electrically isolated, whereas
normal cells are in electrical
communication via gap junctions

Loewenstein and Kanno, 1966; Jamakosmanovic
and Loewenstein, 1969; Hotz-Wagenblatt and
Shalloway, 1993; Yamasaki et al., 1995;
Omori et al., 2001

Application of EM fields can affect
tumor growth and progression

Applied fields can selectively cause death
of tumor tissue

Humphrey and Seal, 1959; Kim, 1976; Sheppard
and Eisenbud, 1977; Schauble et al., 1977

Applied fields can increase growth of
tumor tissue

Phillips, 1987; Mevissen et al., 1993

EM fields can cause interconversion
between normal tissue and

Magnetic fields can cause neoplastic behavior
in chick cells

Jacobson, 1988; Parola et al., 1988

cancerous tissue Magnetic fields affect oncogene expression Ryaby et al., 1986; Hiraoka et al., 1992
Electric fields can cause differentiation and
de-differentiation, which is key to cancer
progression

Becker and Murray, 1967b; Cone and Tongier,
1971; Harrington and Becker, 1973; Chiabrera
et al., 1979
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emerging as a key factor in the regulation of embryonic
morphogenesis and physiology [Ives and Rector,
1984; Martinez-Zaguilan and Gillies, 1992; Martinez-
Zaguilan et al., 1993; Jones and Ribera, 1994; Sater
et al., 1994; Arcangeli et al., 1996; Shrode et al., 1997;
Bianchi et al., 1998; Uzman et al., 1998].

Gap junctions are an important aspect of bioelec-
trical controls of tumor growth because they provide
direct cytoplasmic contact between neighboring cells
and thus enable isopotential syncitia of cells. Gap
junctional communication (GJC) allows electric events
occurring in one cell to be immediately transferred to its
neighbors, bypassing second messenger pathways or
receptor/ligand interactions; gap junctions are known
to be crucial components in the signal exchange which
underlies embryonic patterning and many physiologi-
cal events [Lo, 1996; Levin, 2001]. Gap junction genes
are recognized tumor suppressors [Mesnil et al., 1995;
Yamasaki et al., 1995, 1999; Omori et al., 2001]. These
data form a powerful complement of molecular genetic
studies to older work showing that membrane voltage
potential is a key factor in determining cell division
rates [Cone, 1969, 1970, 1971, 1974b, 1980]. Effects on
gap junctional communication also provide an appeal-
ing model for explaining tumor growth induced by
exposure to weak magnetic fields. ELF exposure gene-
rally does not transmit nearly enough energy to cause
mutagenesis of DNA, but has been shown to affect gap
junction states and thus potentially to control prolifera-
tion and differentiation [Schimmelpfeng et al., 1995;
Ubeda et al., 1995; Li et al., 1999;Griffin et al., 2000a,b;
Hu et al., 2001; Yamaguchi et al., 2002].

MITOGENETIC RADIATION

Living cells and tissues emit a wide range of ultra-
weak photons in the ultraviolet and infrared ranges, as

well as ELF and high frequency EMwaves; these fields
are correlated with developmental events (see Table 6),
and several studies indicate that signals can be passed
between living systems in the absence of chemical
communication. Traditional experiments involved
optically coupled, but chemically isolated, cultures
of bacteria or yeast. Gurwitsch was one of the first to
studymitogenetic radiation [Gurwitsch, 1988],which is
related to many facets of cell cycle control and cellular
metabolism.Mei [in Ho et al., 1994, p. 269] reviews the
history of biophoton research [also see Tsong, 1989;
Popp et al., 1992].

The emphasis in this work is on coherence among
the photon field emitted by cells, the ability of such a
field to carry information over biologically relevant
distances, and the possible causal roles of this radiation
in the maintenance of the biosystem. Popp and Nagl
[1983a,b, 1988] present a detailed model of differentia-
tion based on DNA’s interaction with biophotons: the
existence of a feedback loop between the conformation
of DNA and the biophoton field of a cell. They suggest
that the competition of DNA molecules for photons
results in changes of statistical properties of the cell
photon field and that this participation depends on a
conformation of base pairs. Chwirot [1986, 1988] pre-
sents data which supports this model of the proposed
role of mitogenetic radiation in vivo as the carrier of
intercellular information.

MECHANISMS

While it is impossible to do full justice here to the
many possible models for bioelectromagnetic mechan-
isms, a few directions [see Wood, 1993; Engstrom and
Fitzsimmons, 1999] should be noted since they are
valuable starting points for interpreting known effects
and formulating future studies. At the level of the

TABLE 6. Mitogenetic Radiation and EM Wave Emission From Living Systems

Type of phenomenon Specifics Reference

Cells emit ultraweak photons
(ultraviolet range), which carry

Cells and organisms emit a wide range of
ultraweak photons

Colli et al., 1955; Popp, 1979; van Wijk and
Schamhart, 1988

information Radiation correlates with cell cycle stage Quickenden and Hee, 1974; Quickenden and
Hee, 1976; Chwirot and Popp, 1991, 1995;
Grasso et al., 1991

Radiation correlates with cell division rates
and morphogenetic events

Perelygin and Tarusov, 1966; Chwirot, 1986;
Chwirot and Dygdala, 1986, 1991; Bajpai
et al., 1991

Radiation can induce changes in
chemically-isolated systems

Galle et al., 1991, Galle, 1992; Schauf et al., 1992

Cells emit specific ELF EM waves Waves correlate with growth events Pohl and Hawk, 1966; Pohl, 1981, 1984
Cells emit millimeter EM waves Models based on long-range coherence via

these fields have been proposed
Pohl, 1980; Cooper, 1981; Fröhlich and Kremer,
1983; Fröhlich, 1988

Cells also communicate in the Cells emit IR pulses Albrecht-Buehler, 1992b
infra-read (IR) range Cells detect IR (probably through centrioles) Albrecht-Buehler, 1979, 1981, 1990, 1992a, 1994

Cells use IR signals for migration cues Albrecht-Buehler, 1991
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biophysics of electromagnetic field interactions with
molecular systems, electric fields exert forces on ions,
while magnetic fields exert forces onmagnetic particles
and on moving ions.

Barnes [1992] presents an overview of mechan-
isms, along with possible theories as to how fields
whose energies are very weak relative to ambient ther-
mal energy can be detected by biosystems. In general,
EM fields can affect biochemical reactions and the
behavior of charged molecules near membranes. Both
mechanisms can be readily visualized as having direct
effects on cell behavior. Magnetic fields can exert
influence in one of several ways: generate electric fields
in conductors; exert force on moving charge carriers;
exert torque on permanent magnetic dipoles and
nonspherical para- or diamagnetic particles; exert force
on permanentmagnetic dipoles or para and diamagnetic
particles, though only in inhomogeneous fields; change
rate of diffusion acrossmembranes; distort bond angles,
which affects protein binding and macromolecule
synthesis; and change rates of quantum proton tunnel-
ing between nucleotide bases inDNA [Barnothy, 1969].
Ultraweak photons have been suggested to affect subtle
structure of molecules such as DNA, and infrared
radiation can plausibly be detected by centrioles. The
sensing of extracellular electric fields by voltage sensi-
tive ion channels in membranes is well established.

CONCLUSION

Development of the vibrating (self-referencing)
probe allowed the mapping of extracellular ion fluxes
in real time in living organisms [Jaffe, 1981]. Prior to
these advances, Burr et al. formulated the field concept
in terms of standing voltage potential differences [Burr
and Northrop, 1937, 1939] and explicitly proposed
that a complex pattern of DC electric fields present
within living organisms is a key factor in morpho-
genesis and contains part of the information needed to
produce a three dimensional organism. ‘‘The funda-
mental basis of this theory is that the pattern of
organization of any biological system is established by
a complex electro-dynamical field which is in part
determined by its atomic physico-chemical compo-
nents and which in part determines the behavior and
orientation of those components. This field is electrical
in the physical sense’’ [Northrop and Burr, 1937; Burr,
1944].

While the evidence for the importance of bio-
electromagnetic fields in various disparate aspects of
morphogenesis is strong, much future research into this
area will be necessary before it becomes clear to what
extent such a global view of biological EM information
is valid. At this stage, it is important to concentrate on

mapping the fields as individual currents or contour
maps of potential differences and investigating exter-
nally applied field effects on cells and tissues, as neces-
sary components to the elucidation of the mechanistic
roles of electrical events in specific patterning events.
Eventually, it may be possible to formulate models of
development which take advantage of real field proper-
ties of bioelectromagnetic phenomena, in addition to
purely local interactions mediated by ion fluxes [see
for example, Cohen andMorrill, 1969a,b]. A number of
embryonic contexts could benefit from such directions,
including for example, the context of regenerating
limbs [French et al., 1966], which clearly displays field
properties without a known material basis. Larter and
Ortoleva [1981] present a detailed mathematical model
of natural electric fields functioning as patterning
mechanisms in early development; this excellent paper
also discusses information storage, symmetry con-
servation and breaking, and nonlinear stochastic mech-
anisms as they apply to an electrically controlled
self-organizing system.

It is necessary to determine to what extent it is
profitable to understand EM field interactions with
organisms as information, rather than mechanical
influence. A related issue is the possible interaction
between the level of complexity of a given biosystem
and the degree of involvement of bioelectromagnetic
phenomena. This is hinted at, for example, by the
observation that to achieve the same effects, greater
magnetic fields must be used on individual cells and
tissues than on the whole organism [Barnothy, 1964].
In its simplest form, this suggests an amplification
effect which manifests itself as a systems property and
appears with increasing organizational complexity
[Adey, 1980]. ‘‘It has been found that entire organisms
are most sensitive to EMFs, isolated organs and cells
less, and solutions of macromolecules are even less
sensitive . . . . The appearance of enhanced sensitivity to
EMFs only in fairly complexly organized biological
systems can be regarded as one of the manifestations of
the specific nature of life—its organization’’ [Presman,
1970]. Other hints for an informational role for
endogenous EM fields, rather than separate mechanical
influences, come from studies such as those summar-
ized in Table 7.

‘‘Informational interactions play a significant
(if not the main) role in these processes. Such inter-
actions entail the transmission, coding, and storage of
information.The biological effects due to these inter-
actions do not dependon the amount of energy introduc-
ed into the system, but on the amount of information
introduced into it. The information-carrying signal
merely causes the redistribution of the energy in the
system itself, and regulates the processes occurring in it.
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If the sensitivity of the receiving system is high, little
energy is required for the information transfer. The
information can be built up by the repetition of weak
signals’’ [Presman, 1970, p. 5–6].

Much progress can be made in the near future by
using modern cell biology techniques and screening
of genetically tractable organisms such as zebrafish,
which would also be amenable to rapid fluorescent
analysis of ion and voltage events, to identify novel
processes dependent on electrogenic genes. Genetic
manipulation using wild type and dominant negative
constructs for ion channel and pump proteins, specific
pharmacological ion pump blockers [Levin et al.,
2002], pH- and voltage-sensitive fluorescent dye
technology [Loew, 1992], self-referencing, ion selec-
tive extracellular probes [Smith et al., 1999], and high
resolution SQUID probes [Thomas et al., 1993] are just
some of the approaches which will be used to charac-
terize, in molecular detail, the contribution of EM
signals to individual morphogenetic contexts.

Such work can then be augmented by theoretical
and modeling approaches seeking to understand infor-
mational aspects of endogenous electric and magnetic
fields and possible applicability of true field properties
to patterning events. In particular, it is crucial to identify
downstream targets, which sense pH and voltage gradi-
ents and transduce them to gene expression and other
cellular events. The information and insights gained
will be crucial in elucidating the nature and origin of
high level morphogenetic control in growth and de-
velopment of biosystems, and will have enormous
implications for human medicine as well as basic
understanding of biology.
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