
C

Prenatal origins of adult diseas
e
Mark J. Nijlanda,b, Stephen P. Fordb and Peter W. Nathanielsza,b
aCenter for Pregnancy and Newborn Research,
Department of Obstetrics and Gynecology, University
of Texas Health Science Center at San Antonio, San
Antonio, Texas and bCenter for the Study of Fetal
Programming, Department of Animal Sciences,
University of Wyoming, Laramie, Wyoming, USA

Correspondence to Peter W. Nathanielsz, MD, PhD,
Department of Obstetrics and Gynecology, University
of Texas Health Science Center at San Antonio, 7703
Floyd Curl Drive, San Antonio, TX 78229, USA
Tel: +1 210 567 5055; fax: +1 210 567 5033;
e-mail: nathanielsz@uthscsa.edu

Current Opinion in Obstetrics and Gynecology

2008, 20:132–138

Purpose of review

Human epidemiological and animal studies show that many chronic adult conditions

have their antecedents in compromised fetal and early postnatal development.

Developmental programming is defined as the response by the developing mammalian

organism to a specific challenge during a critical time window that alters the trajectory o

development with resulting persistent effects on phenotype. Mammals pass more

biological milestones before birth than any other time in their lives. Each individual’s

phenotype is influenced by the developmental environment as much as their genes. A

better understanding is required of gene–environment interactions leading to adult

disease.

Recent findings

During development, there are critical periods of vulnerability to suboptimal conditions

when programming may permanently modify disease susceptibility. Programming

involves structural changes in important organs; altered cell number, imbalance in

distribution of different cell types within the organ, and altered blood supply or recepto

numbers. Compensatory efforts by the fetus may carry a price. Effects of programming

may pass across generations by mechanisms that do not necessarily involve structura

gene changes. Programming often has different effects in males and females.

Summary

Developmental programming shows that epigenetic factors play major roles in

development of phenotype and predisposition to disease in later life.
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Introduction
In the last 10–15 years there has been a growth of interest

in the concept that many chronic adult conditions have

their antecedents in abnormal fetal and early postnatal

development. This concept has been termed develop-

mental programming. Developmental programming can

be defined as the response by the developing mammalian

organism to a specific challenge during a critical time

window that alters the trajectory of development quali-

tatively and/or quantitatively with resulting persistent

effects on phenotype.

Developing organisms pass more biological milestones

before birth than at any other time in their lives. It should

therefore be no surprise that significant alterations in the

timing or nature of these developmental steps have con-

sequences in terms of organ function in later life. It also

needs to be recognized that the development of each

individual’s specific phenotype, although based on a

specific genotype, is influenced to a varying extent by

epigenetic/environmental factors. Although an extreme

example, there can be little dispute that the genome of
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the fetus exposed to repeated and excessive alcohol will

function very differently throughout life from the way it

would have done in the absence of that exposure. Fetal

alcohol syndrome represents the epigenetic effects on the

fetal genome of excessive exposure to alcohol during

development. Thus it is vitally important to understand

the gene–environment interactions that lead to adult

disease.

Acceptance and understanding of developmental pro-

gramming comes from human epidemiological studies

and a wealth of carefully controlled animal investiga-

tions primarily in rodents and sheep. There are numerous

reviews on the exposures, mechanisms and outcomes

involved [1–15]. In the early days of the concept of

developmental programming several principles rapidly

became clear. These are laid out in Table 1 [16]. For this

review we will restrict our discussion to six of these

principles – 1, 2, 4, 7, 9 and 10 – and focus on con-

trolled animal investigations demonstrating that maternal

undernutrition, overnutrition and stress, and fetal

hypoxia, are all environmental factors that support the

general principles of developmental programming.
.
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Table 1 Ten principles of developmental programming [16]

Principle 1 During development, there are critical periods of vulnerability to suboptimal conditions. Vulnerable periods occur at
different times for different tissues. Cells dividing rapidly at the time of exposure are at greatest risk. Risk factors
include too much of a normal chemical such as a hormone, critical nutrient or vitamin; deficiency of a normal
chemical such as a hormone, critical nutrient or vitamin; abnormal chemicals such as alcohol or nicotine;
abnormal physical forces, such as high blood pressure.

Principle 2 Programming has permanent effects that alter responses in later life and can modify susceptibility to disease.
Principle 3 Fetal development is dependent on fetal physical activity. Normal development is dependent on continuing

normal activity. Each phase of development provides the required conditions for subsequent development.
Principle 4 Programming may involve structural changes in important organs. The absolute numbers of cells in the organ may

increase or decrease; the relative proportions and distribution of different types of cell within the organ may be
unbalanced; the normal blood supply to the organ may be compromised; too many or too few hormone receptors
may form with a resultant resetting of feedback and other control mechanisms.

Principle 5 The placenta plays a key role in some forms of programming.
Principle 6 Compensation carries a price. In an unfavorable environment, the developing baby makes attempts to compensate

for deficiencies. Following compensation, birth weight may be normal or only slightly decreased. However, the
compensatory effort carries a price.

Principle 7 Attempts made after birth to reverse the consequences of programming may have their own unwanted consequences.
When postnatal conditions prove to be other than those for which the fetus prepared, problems may arise.

Principle 8 Fetal cellular mechanisms often differ from adult processes. Fetuses react differently to suboptimal conditions than do
newborn babies or adults.

Principle 9 The effects of programming may pass across generations by mechanisms that do not necessarily involve changes
in the genes.

Principle 10 Programming often has different effects in males and females.
Principles 1 and 2
Principle 1 is that there are critical periods of vulner-

ability to suboptimal conditions that occur at different

times for different systems; Principle 2 is that there are

permanent effects that alter responses in later life and can

modify susceptibility to disease. It is impossible to sep-

arate these two principles. The first refers to the timing of

exposure and Principle 2 to the outcome resulting from

that exposure. Perhaps the best human example comes

from the study of individuals who survived the Dutch

Hunger Winter of 1944–1945 [17–21]. Children who

passed any period of their prenatal development during

that time suffered from poor nutrition. Epidemiological

studies of these individuals, now over 60 years old, have

demonstrated that undernutrition of their mothers at

different stages of pregnancy produced different out-

comes. For example, undernutrition in the last third of

gestation decreased the percentage of the babies who

become obese as adults whereas undernutrition during

the first two trimesters increased the prevalence of adult

obesity [22,23].

The idea that there are critical time windows when

developing systems are most vulnerable to challenge,

and the fact that these vulnerable periods differ among

systems and species, is clearly supported by work in

animals. Changes in activity of a given system across

development have been clearly demonstrated in numer-

ous models, leading to the suggestion that suboptimal

conditions will impact the same system differently

depending on the timing of the insult. A well-known

example comes from work in several laboratories

that provides insights regarding the role of the renin–

angiotensin system (RAS) in development of the heart
opyright © Lippincott Williams & Wilkins. Unauth
[24–29]. Angiontensin II receptor type 1 (AT1) mRNA

levels remained constant across the late gestation period,

while receptor type 2 (AT2) mRNA expression was much

higher with a dramatic decrease soon after birth [26]. In

sheep, AT1 blockade during gestation was shown to have

chamber and gestational age-specific effects on AT1

mRNA expression [increased at 95 and 135 days of gesta-

tional age (dGA) in the right atrium and the left ventricle

at 110 dGA] [26]. Similarly, other investigators have

reported that angiontensin II signaling has gestational

age-specific effects on fetal heart growth in sheep and

pig [25,27]. Sundgren et al. [25] have shown that angion-

tensin II promotes hyperplastic growth during early

gestation, whereas Beinlich et al. [27] have demonstrated

its importance in hypertrophic growth during neonatal

life in the pig.

In a now classical study, Barraclough and Gorski [30]

demonstrated that when female rats receive a single dose

of androgen in the first 5 days of postnatal life, they did

not show normal reproductive cycling at puberty. If

exposure to androgen occurred 15 days later, near wean-

ing, there was no persistent effect on reproduction. More

recent animal studies have focused on poor nutrition in

fetal life (for example, isocaloric low-protein diets [31],

global nutrient restriction [32,33], and reduced uterine

blood flow [34]), maternal stress (in rhesus monkeys

[35,36] and pigs [37]) and exposure to various pharma-

cological agents (such as antenatal glucocorticoids

[38–41]). Other studies compare outcomes resulting from

insults during fetal life with insults occurring during early

postnatal life [42,43].

The study by Barraclough and Gorski [30] also clearly

demonstrated the second principle of developmental
orized reproduction of this article is prohibited.
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programming, namely that there are permanent effects

of neonatal androgen exposure on structures in the brain,

particularly the hypothalamus, that regulate female

reproductive cycle, following exposure at a critical time

in development. More recently various well-character-

ized animal models have shown long-term consequences

for the offspring. In rats, guinea-pigs, sheep and humans,

fetal growth restriction and reduction in either maternal

protein or global caloric intake leads to hypertension

[44–50], obesity [10,51–56], diabetes [9,57–61], altered

endocrine function [62–67] and mood disorders [68–71].

Finally, in comparing conclusions based on data from

different species, it is clear that the trajectory of devel-

opment of different systems varies between species. The

simplest examples are differences between altricial

species (born in an immature state and in which much

development occurs after birth) and precocial species

(born at a more advanced state of maturation). Thus

the periods of vulnerability of the developing reproduc-

tive system which are postnatal in rodents are generally

prenatal in sheep and humans.
Principle 4
Principle 4 states that programming may involve struc-

tural changes in important organs. We can say with

confidence that a suboptimal developmental environ-

ment alters organ growth. The absolute numbers of cells

in an organ may increase or decrease as a result of nutrient

insufficiency and altered cell growth and division. Organ

growth restriction has been demonstrated in models of

maternal nutrient restriction [72,73], decrease in uterine

blood supply as a result of uterine artery ligation [74] or

uterine or umbilical artery embolization [75,76]. In each

model the fetal nutrient supply is compromised.

Growth restriction may manifest itself only within certain

components of an organ. We have shown that maternal

nutrient restriction during the first half of gestation in the

sheep induces asymmetric growth restriction [73].

Regardless of the cause, deficient levels of nutrients

and oxygen lead to alterations in blood flow to, and

vascular development in, the fetal brain, heart, lungs,

abdominal viscera and skeletal muscle [77,78]. Maternal

low-protein diets given to rats in pregnancy result in a

smaller number of blood vessels per unit area in the fetal

rat pancreas [79]. This decrease in potential vascular

perfusion of the pancreas is likely to limit pancreatic

islet function and be one of the major factors in the

predisposition of offspring of nutrient-restricted mothers

to develop diabetes.

Growth of the fetal kidney has received considerable

attention because of its importance both during fetal life

and in the transition to an independent postnatal exist-

ence. Several studies have investigated aspects of the
opyright © Lippincott Williams & Wilkins. Unautho
renal structure following nutritional deficit during preg-

nancy. In humans, fetal growth restriction is associated

with a decrease in kidney size [80,81] and post-mortem

glomerulus number [82]. Hughson et al. [83] showed a

direct relationship between total glomeruli number in

adult humans and birth weight. Furthermore, mean glo-

merulus volume was inversely correlated with glomerulus

number. In rodents and sheep a reduction in total caloric

food intake [49,84] or total dietary protein [85–87] during

pregnancy induced a nephron deficit [88] and an increase

in glomerular size [87]. Recently, a maternal diet low in

protein has been shown to alter these relationships by

changing cell turnover and gene expression at the begin-

ning of metanephrogenesis in rats [89].

Widespread change in receptor populations is a further

refinement of the idea that structure is impacted by a

suboptimal environment in utero. Glucose transport

proteins are found in fetal tissues from early in gestation

[90–92] and are altered by maternal under nutrition [93].

Gene and protein expression within the fetal kidney, for

example, has recently been found to be sensitive to

maternal nutrient status in the rat [89,94,95], sheep

[96,97�] and the baboon [98–100]. Recent reports from

our group have shown that maternal nutrient restriction

during the first half of gestation in the sheep induces

asymmetric growth restriction [73], alters gene transcrip-

tion in the fetal heart [101–104], downregulates fetal

skeletal-muscle protein synthesis [105], and alters con-

centrations of amino acids in fetal fluids by mid-gestation

[106].
Principle 7
Principle 7 states that when postnatal conditions prove to

be other than those for which the fetus prepared, pro-

blems may arise. The livers of fetal rats undernourished

in utero show dramatically altered function and structure

[107]. Individual lobules have more cells with phospho-

enolpyruvate carboxykinase (PEPCK) activity than fetal

livers of rats whose mothers received adequate nutrition.

PEPCK is the key gluconeogenic enzyme and this

nutrionally induced change indicates the fetal need to

increase gluconeogenesis in the face of decreased glucose

availability. Forhead and colleagues [108] have shown in

the chronically catheterized fetal sheep that an increase

in PEPCK is one of the many changes the fetus normally

makes in late development to prepare to perform gluco-

neogenesis postnatally. If the neonate has an imbalance

in liver glucose metabolism tending towards increased

glucose production, that adaptation will be of value if

food shortage is experienced postnatally. This response

to adverse prenatal conditions has been called a predic-

tive adaptive response (PAR), indicating its value

in helping the offspring survive [109]. However, if

the postnatal dietary regimen is adequate – or even
rized reproduction of this article is prohibited.
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overabundant, as in our overconsumption-orientated

society – the PAR is maladaptive and may predispose

to obesity.

The idea that it is important to match prenatal develop-

ment with the postnatal environment has important

implications for the management of growth-restricted

human neonates. Animal models have a major role to

play in understanding effects of altered diet at different

times of development with subsequent postnatal

changes. Some outcomes of developmental programming

can be certainly considered as PARs (such as an increased

tendency to gluconeogenesis, which will be beneficial to

survival under certain circumstances). However, other

outcomes are distinctly maladaptive responses (MARs).

Outcomes that could be considered MARs with no

apparent value to survival are the decreased muscle mass

or numbers of glomeruli that result from maternal nutri-

ent deficiencies and predispose directly and inevitably to

suboptimal health in later life.

Several rodent studies have investigated outcomes when

neonates that are growth restricted at birth have been fed

postnatally to induce catch-up growth [42,110]. As dis-

cussed above if the postnatal environment differs from

the one in which the fetus developed, the mismatch may

lead to later health problems. Ozanne and Hales [42] fed

pregnant mice either a 20% protein or an 8% low-protein

diet to restrict fetal growth and cross fostered pups at

birth so that the offspring of mothers fed on a low-protein

diet during pregnancy were reared by normally fed dams,

the catch-up group. In the low-protein group offspring of

mothers fed the normal protein diet during pregnancy

were reared by mothers fed on a low-protein diet. Off-

spring in the catch-up group showed rapid catch-up

growth and died earlier than controls. Interestingly, mice

that grew normally before birth but were fed by mothers

on the low-protein diet lived 57% longer than the catch-

up group, approximately equivalent to a human living

75 rather than 50 years [42].
Principle 9
Principle 9 is that programming may cross generations.

The consequences of various challenges to which the

developing organism is exposed can be passed transge-

nerationally from female offspring, challenged during

their own development to their own offspring [111]. In

the 1990s two independent groups of investigators

demonstrated that the F1 female diabetic offspring of

F0 rats treated with streptozotocin during pregnancy

themselves have F2 offspring with altered glucose and

carbohydrate metabolism [112–114].

More recently, Zambrano and colleagues [110] deter-

mined whether, when F0 female rats are exposed to
opyright © Lippincott Williams & Wilkins. Unauth
protein restriction during pregnancy and/or lactation,

their female pups (the F1 daughters) deliver offspring

(the F2, or granddaughters and grandsons) with evidence

in vivo of altered glucose and insulin metabolism. The F0

rats were fed a normal control 20% casein diet (C) or a

restricted diet (R) of 10% casein during pregnancy. After

delivery, the mothers received either C or R diet during

lactation to provide four sets of offspring – groups CC,

RR, CR, and RC – where the first letter represents the

diet during pregnancy and the second the diet during

lactation. All the female offspring were fed ad libitum with

C diet after weaning and during their first pregnancy and

lactation. As they grew the female offspring of RR and

CR mothers had low body weight and food intake with

increased sensitivity to insulin during a glucose tolerance

test at 110 days of postnatal life. Grandsons of the CR

mothers showed evidence of insulin resistance. In con-

trast, granddaughters of the RC mothers showed evi-

dence of insulin resistance.
Principle 10
Principle 10 is that programming may affect males and

females differently. It is fairly well accepted that men are

at greater risk for cardiovascular and renal disease than

women of similar ages [115–117]. Recent work has

clearly shown sex-specific expression of genes that code

for proteins involved in drug metabolism and osmoregu-

lation in the murine kidney that may directly contribute

to sex effects in renal development or function [118].

Similarly, genes encoding drug and steroid metabolism

were found differentially expressed between the sexes

in the liver [118], an organ in which gender-specific

transcriptional regulation of numerous genes by growth

hormone has been described [119–122].

The transgenerational study by Zambrano et al. [110]

demonstrates that maternal protein restriction adversely

impacts glucose and insulin metabolism of male and

female second-generation offspring in a manner specific

to gender and the developmental time window. There

are many other examples now in the literature of differing

responses of male and female offspring to a variety

of challenges. Recent work in rats has shown gender

differences in the programming of the myogenic vasodi-

latory response to nitric oxide and prostaglandins in the

mesenteric vasculature in male offspring following

hypoxia during gestation [123]. In another study using

radiotelemetric recording methods in conscious rats,

raised blood pressure in female but not male offspring

of dams fed a diet rich in animal lard has been demon-

strated [124].

Our work in sheep has shown that maternal global caloric

restriction alters intrarenal immunoreactive AT1, AT2

and renin expression in ways specific to gestational age
orized reproduction of this article is prohibited.
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and gender [97�]. We have also evaluated the effect of

30% global restriction from 30 to 90 days of gestation in

the baboon (term 180 days) on the intrarenal RAS in

male and female fetal kidneys at 90 days. Steady-state

mRNA and protein were evaluated using the Human

Genechip U133A 2.0 or Western blot in six controls

fed ad libitum (C; three males, three females) and six

nutrient-restricted (NR; three males, three females)

fetuses. AT1 mRNA was increased (92%) in NR males

(NRM) compared with C males (CM), C females (CF),

and NR females (NRF). Both diet and the interaction

between diet and gender were significant. There was no

diet or gender effect on AT2 mRNA expression. Renal

AT1 protein expression exhibited both diet and gender

effects, with immunoreactivity being increased in NRM

compared with all other groups. Conversely, AT2 protein

was decreased in NRM compared with CM, CF and

NRF, resulting in an AT1/AT2 protein ratio that was

increased in NRM compared with CM, CF and NRF. A

diet–gender interaction was observed on angiotensin-

converting enzyme (ACE) immunoreactivity. Finally,

no group differences were found in maternal plasma

cortisol concentrations at 90 days. We found that diet-

induced alterations in mRNA and protein expression, and

the AT1/AT2 protein ratio, occur in male fetuses rather

than females and are independent of maternal cortisol

levels, leading to the postulate that gender-based sensi-

tivity to nutrient deficit likely reflects differences

between trajectories of growth, development and caloric

demand in male and female fetuses.
Conclusion
The mounting human epidemiological and controlled

animal experimental data clearly demonstrate that adult

health is determined by both an individual’s genome and

the environment in which that genome develops. Whereas

there are genetic conditions such as Huntington’s chorea

and cystic fibrosis that have a dominant and inevitable

effect on adult health, the phenotype that emerges as a

result of the interaction of epigenetic influences on the

genome is critical to good adult health in a much larger

segment of the population. Thus understanding the pre-

natal (and immediate postnatal) influences on adult dis-

ease and developing preventive strategies for pregnancies

at risk is one of the major challenges of biomedical research

and the delivery of obstetric care.
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