Evidence from clinical and animal model studies of the long-term and transgenerational impact of stress on DNA methylation

Jennifer Blaze, Tania L. Roth *
Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA

ABSTRACT

While it is well-known that stress during development and adulthood can confer long-term neurobiological and behavioral consequences, investigators have only recently begun to assess underlying epigenetic modifications. In this review, we highlight clinical research and work from animal models that provide evidence of the impact of stressful experiences either during the perinatal period or adulthood on DNA methylation and behavior. Additionally, we explore the more controversial concept of transgenerational inheritance, including that associated with preconception stress experienced by the mother or father. Finally, we discuss challenges associated with the idea of transgenerational epigenetics and for the field of epigenetics in general.

Contents

1. Introduction ... 00
2. Fundamentals of DNA methylation .. 00
3. Prenatal stress ... 00
 3.1. Introduction .. 00
 3.2. DNA methylation in rodents 00
 3.3. DNA methylation in humans 00
4. Early-life postnatal stress ... 00
 4.1. DNA methylation in rodents 00
 4.2. DNA methylation in humans 00
5. Adult stress .. 00
 5.1. DNA methylation in rodents 00
 5.2. DNA methylation in humans 00
6. Transgenerational inheritance of epigenetic marks 00
 6.1. Introduction .. 00
 6.2. Preconception stress in rodents 00
 6.3. Preconception stress in humans 00
7. Challenges in epigenetics and exciting opportunities for future research 00
 7.1. Modes of intergenerational transmission 00
 7.2. Cell-type and brain-region specificity 00
 7.3. The new cytosine variants 00
8. Conclusions .. 00
Acknowledgments .. 00
References ... 00

* Corresponding author at: Department of Psychological and Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19716, USA. Tel.: +1 302 831 2787; fax: +1 302 831 3645.
E-mail address: troth@psych.udel.edu (T.L. Roth).

http://dx.doi.org/10.1016/j.semcdb.2015.04.004
1084-9521/© 2015 Elsevier Ltd. All rights reserved.

Please cite this article in press as: Blaze J, Roth TL. Evidence from clinical and animal model studies of the long-term and transgenerational impact of stress on DNA methylation. Semin Cell Dev Biol (2015), http://dx.doi.org/10.1016/j.semcdb.2015.04.004
1. Introduction

Offspring exist in the context of an ever-changing physical and social environment, and this context plays a huge role in development. Offspring inherit a set of genes from the previous generation, but the operation of this genome is dependent upon environmental context. Stressful events are particularly effective at influencing expressivity of the genome, yielding changes in chemical, anatomical, and neurophysiological properties of the brain that can produce abnormal behavioral trajectories [1–8]. Often, these changes are present long after the initial insult and even in subsequent generations [9]. Therefore, the idea that a stressful environment or experience has the capacity to shape the brain and behavior for the long-haul is now a fundamental principle of neuroscience. More recent research from the field of behavioral epigenetics argues that a mechanism underlying this phenomenon is DNA methylation. This review will describe DNA methylation alterations produced by stress at different developmental time points and functional outcomes and implications of these changes. Further, we discuss transgenerational inheritance of stress-induced DNA methylation alterations, and highlight controversies and challenges for this line of work and the epigenetics field in general.

2. Fundamentals of DNA methylation

The term "epigenetics" was coined by Waddington in the 1940s, referring to the causal interactions between genes and their products which bring a phenotype into being [10]. The term is now traditionally used to describe chemical modifications to chromatin (DNA and its associated histone proteins), and types of epigenetic modifications of this fashion include histone modifications (i.e. acetylation, methylation, and phosphorylation) and DNA methylation and demethylation. In this review, we focus on DNA methylation/demethylation as a mechanism linking stress to behavioral outcomes, including those that span generations.

DNA methylation refers to the addition of methyl groups to cytosines and is catalyzed by a group of enzymes known as DNA methyltransferases (i.e. DNMT1, 3a, and 3b) [11]. Conversely, DNA demethylation refers to the removal of methyl groups and as an active process is thought to occur in one of two ways. The ten-eleven translocation (TET) family of proteins can catalyze oxidation of 5-methylcytosine to 5-hydroxymethylcytosine, leading to a base-excision and replacement with a non-methylated cytosine [12]. Hydroxymethylation has been emerging in the literature as a more stable alteration than previously thought, so it may have more implications for gene activity, neurobiology, and behavior than as a simple intermediate in the demethylation pathway [8,13–15]. Another proposed method of demethylation involves the protein Growth-arrest and DNA damage inducible beta (Gadd45B), which also leads to demethylation via a base-excision repair-like mechanism [16,17].

The addition of methyl groups to CG sites is normally known to repress gene transcription [11]. By directly blocking the binding of transcription factors, mRNA levels decrease. Additionally, methyl groups can bind Methyl-CpG Binding Protein 2 (MeCP2), which recruits histone deacetylases (HDACs) and other co-repressing proteins to repress gene transcription. In a few reported cases, DNA methylation has been associated with active gene transcription (e.g. [18,19]), and instead of always producing basal changes in gene expression, DNA methylation/demethylation are also recognized for their ability to prime transcriptional responses to stimulation [15]. We also point out that studies have found evidence of non-CG methylation in the genome [20,21], which might affect transcription differently than CG methylation [22], and other chemical modifications of cytosines are now known to exist (i.e. 5-formylcytosine and 5-carboxycytosine), but their functions in regards to behavior are still largely unknown [14]. Finally, while studies have mainly investigated promoter methylation of genes, other work has highlighted the presence of DNA methylation in intragenic regions (i.e. gene bodies) that can likewise alter gene transcription [22].

3. Prenatal stress

3.1. Introduction

Because the brain undergoes tremendous development during the prenatal period, environmental insults can have large-scale and far-reaching effects [23,24]. Though we focus on the effects of psychosocial stress during gestation on offspring DNA methylation, we briefly mention here the effects of two other prenatal stressors with known transgenerational consequences: poor maternal diet and toxin exposure. For example, we have learned of one instance of the connection between fetal experience, long-term negative outcomes, and epigenetics from offspring of parents that experienced the Dutch Famine. These individuals have higher incidences of schizophrenia, depression, and other physical maladies, as well as altered methylation states for a host of genes involved in developmental and metabolic pathways [25,26]. Other empirical reports linking epigenetics to long-term neurobiological and behavioral consequences of poor maternal diet exist [27–31], as is the case for prenatal exposure to a variety of toxins [32–39]. For example, an elegant series of studies summarized in Fig. 1 demonstrate the long-lasting impact of maternal vinclozolin exposure (a fungicide known to disrupt endocrine function) on health and behavior [e.g. 32,33 and many other citations from the Skinner lab].

3.2. DNA methylation in rodents

During gestation (which is 21–23 days in rodents), stressors applied to the mother, such as constant light, wet bedding, noise, frequent cage changes, and restraint, are known to produce long-term changes in her offspring’s brain. Early work revealed epigenetic consequences for genes important in stress regulation, including increased methylation of the hippocampal glucocorticoid receptor (GR) promoter and decreased methylation of the corticotropin releasing factor (CRF) promoter in the adult amygdala [7]. Both GR and CRF are important in mediating the HPA axis response to stress, and prenatally stressed male offspring also showed maladaptive responses to their own stressful experiences and exhibit depressive-like behaviors [7]. Another mechanism by which prenatal stress may exert negative effects on offspring is through increased methylation of 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2), which normally protects the fetus from maternal glucocorticoids by converting them to inactive metabolites [40].

Work with a prenatal restraint stress model known to produce neural and behavioral characteristics reminiscent of schizophrenia, in which pregnant dams are placed in a plastic tube twice a day for gestational days 7–21, has shown increased cortical levels of DNMTs, methylation, and hydroxymethylation of brain derived neurotrophic factor (Bdnf) IV, reelin, and GAD67 genes in offspring, all of which parallel decreases in mRNA [8,41]. Schizophrenia symptomatology in this model is reversible with an HDAC inhibitor or clozapine, both of which have demethylating effects [42]. Stress-induced Bdnf IV methylation has also been observed in another model that limited prenatal stress (variable stress paradigm, including restraint and swim stress) to the third week of gestation, whereby offspring had increased Bdnf IV methylation in the amygdala at postnatal day (PN) 21 and 80
and increased hippocampal methylation at PN80 [43]. Together, these studies demonstrate the long-term effects of fetal stress on adult methylation patterns, with gene targets including those involved in development, stress responsivity, and many psychiatric disorders.

3.3. DNA methylation in humans

Maternal depression is recognized for its lasting effects on offspring health, and epigenetic consequences perhaps responsible include increased methylation of the GR gene (Nr3c1) [44,45]. Suggesting functional relevance, such methylation changes have been shown to correspond to an increase in salivary cortisol provoked by a stress challenge when infants are 3 months of age [44]. While maternal emotional state seems to be a predictor of infant GR methylation levels and stress response, other stressors during pregnancy can serve as a catalyst for long-term changes in offspring methylation. For example, adolescents of mothers who experience domestic violence during pregnancy have increased methylation of the GR promoter [46]. Further, genome-wide changes in methylation, mainly of genes associated with immune function, were found in thirteen year old children of mothers who were pregnant during the 1998 Quebec ice storm [47]. Taken together, these studies demonstrate the strong effects of both maternal emotional state and adversity experienced during gestation on offspring methylation.

4. Early-life postnatal stress

4.1. DNA methylation in rodents

It was originally thought that DNA methylation only took place during cell development and differentiation (i.e. before birth), but work continues to defy this concept and demonstrates epigenetic consequences of stress outside of embryonic development. Capitalizing on natural variations in maternal care, investigators have shown maternally-driven GR methylation patterns in offspring. Specifically, rats that experience low levels of maternal care (low licking/grooming (LG)) during the first week of life show increased methylation of GR in the hippocampus that is present during infancy and persists through adulthood, decreased GR mRNA/protein, and increased corticosterone levels in response to a stressor [48]. Behavioral and epigenetic effects of low LG are reversible by cross-fostering to high LG dams or by treatment with an HDAC inhibitor [48]. Further, high vs. low levels of maternal care can be passed on to offspring such that high LG offspring became high LG dams themselves, which involves epigenetic programming of the estrogen receptor in females [49]. Maternal care-induced changes in methylation also extend to other transcriptional and intragenic sequences that alter gene activity [22].

Another model of early-life stress involves the absence of maternal care altogether for discrete periods of time. Offspring which experience maternal deprivation (3 h/day for the first 10 postnatal days) show a long-lasting decrease in methylation of hypothalamic arginine vasopressin (AVP) and pituitary propiomelanocortin (Pomc), two gene loci also important in the HPA axis response to stress [50,51]. Further, these offspring show increased AVP and Pomc gene expression and hypersecretion of corticosterone, which parallel behavioral deficits in stress coping and memory [50,51]. Another gene involved in the stress response, CRF, is also sensitive to maternal separation. Specifically, there is converging evidence that maternal separation elicits hypomethylation of hypothalamic (paraventricular nucleus, PVN) [52] and hippocampal [53] CRF as well as cortical and sperm CRF receptor 2 (CRF R2) methylation in animals [54]. Such methylation changes parallel both increases in gene expression and behavioral deficits, including memory deficits [53], synaptic dysfunction [53], depressive-like behaviors [54], and HPA-axis hypersensitivity [52]. These methylation and behavioral abnormalities have been found to extend into the next generation [54]. Finally, the far-reaching effects of maternal separation can also involve methylation of the hippocampal retinoic acid receptor (RAR) promoter, a gene important in differentiation of neural progenitor cells [55], suggesting a role of early-life stress-induced methylation in neurogenesis.

Our lab utilizes another model of early-life stress in which rat pups experience an abusive and neglectful caregiver for 30 min a day for the first week of life [56–59]. Characteristic maternal behaviors experienced by pups in our maltreatment condition include stepping on, actively avoiding, and roughly handling pups. Using this model, we have characterized multiple long-term epigenetic effects of early-life stress on Bdnf DNA. Foundational studies demonstrated that rats that experience maltreatment have increased methylation in the whole PFC [59]. Alterations in Bdnf methylation were subsequently detected in the medial prefrontal cortex (mPFC), amygdala, and hippocampus with increases or decreases varying by region, demonstrating the brain...
region-specific nature of stress-induced changes in Bdnf methyla-
tion [56–58]. Notably, in the whole PFC, the increase in methylation
for one region of the Bdnf gene (exon IX) was present in infancy
(24 h after the last caregiver manipulation) and persisted through
adolescence and into adulthood (PN80) [59]. Further, not only were
PFC methylation changes long-lasting in the generation that expe-
rienced the mistreatment, but the next generation showed similar
Bdnf methylation patterns as well [59]. Due to the importance of
Bdnf in development and synaptic plasticity and its implication in
multiple psychiatric disorders, long-lasting and transgenerational
effects of early-life stress on methylation of this gene provides a
possible mechanism for psychopathological outcomes associated
with maltreatment.

4.2. DNA methylation in humans

While post-mortem studies of brain tissue are rare, the few stud-
ies that exist are extremely informative. There is higher NR3C1
(Gr) promoter methylation in post-mortem hippocampal tissue
from adult suicide victims who had experienced childhood abuse,
a finding that parallels rodent work [60,61]. Genome-wide methy-
lation changes have also been found in hippocampal neurons of
this cohort [62,63].

Because post-mortem samples are difficult to acquire, a large
body of work has focused on peripheral measures of DNA methylation. Blood samples from children that experienced insti-
tutionalization during infancy show genome-wide methylation,
mainly in genes related to immune and cellular signaling pathways
[64]. Genome-wide changes in methylation have also been found
in buccal cells of adolescents that were subjected to high levels
of maternal or paternal stress in infancy and early childhood [65].
Other studies using peripheral measures in humans have empha-
sized the long-term effects of early-life stress in specific genes
important for stress responsivity and implicated in psychiatric dis-
orders. For example, increased NR3C1 promoter methylation was
found in leukocytes of adults that reported experiencing stress or
neglect early in life, which corresponded to an attenuated corti-
sol response during a stress challenge [66]. Severity of childhood
sexual abuse has been shown to positively correlate with NR3C1
methylation in adults with Borderline Personality Disorder [67],
and more recent work with this cohort has revealed genome-wide
methylation alterations [68].

Another gene involved in long-term outcomes in stress reac-
tivity is Fkbp5 binding protein 5 (Fkbps). Measures in peripheral
blood of subjects diagnosed with PTSD have elucidated a link
between genotype, early-life stress, and susceptibility for PTSD
following later trauma. Specifically, a functional polymorphism in
the Fkbps gene, in conjunction with childhood trauma and
demethylation, increase susceptibility for PTSD [69]. The serotonin
transporter gene (S htt), which plays a crucial role in depres-
sion, also exhibits differential methylation after early-life stress.
In women, methylation at this gene locus was associated with self-
reported sexual abuse during childhood and was also associated
with symptoms of antisocial personality disorder during adulthood
[70,71]. Genome-wide hypermethylation has been observed in
males with depression who experienced separation from parents in
early-life, especially for genes involved in brain development [72].
Finally, work has shown substantial differences in genome-wide
methylation and gene expression patterns in individuals exposed
to maltreatment in childhood verses those not exposed [73]. In con-
junction with the animal research described earlier, these studies
highlight the strong susceptibility of the epigenome (particularly of
genes involved in development, plasticity, stress responsivity,
and immune pathways) to methylation alterations following
early-life trauma, which in turn may produce vulnerability to
psychopathology.

5. Adult stress

5.1. DNA methylation in rodents

An even more recent advancement in the field of epigenetics is
the presence of behaviorally- and stress-mediated DNA methyla-
tion or demethylation in adult animals (those that have reached
sexual maturation). Whether such epigenetic changes are as long-
standing (months to years) as those observed with developmental
stress has not been empirically addressed, but as will be discussed
in the next section, the transgenerational nature of preconception
stress underscores the likelihood of such long-term changes.

In rodents, stress during adulthood is known to influence
methylation of various genes in the brain. Exposure to chronic
and unpredictable stressors, including cage tilt, confinement, and
reversed light cycles, produces hypermethylation of the glial cell-
derived neurotrophic factor (Gdnf) gene in the nucleus accumbens,
which is accompanied by decreased mRNA [74]. Multiple groups
have used a social defeat paradigm to model chronic social stress,
in which one mouse is “bullied” by another for multiple consecutive
days during adulthood. One group found that chronic social
defeat stress causes demethylation of the Cfr gene in the PVN,
an effect present for at least two weeks and corresponds with the
development of social avoidance behavior [75]. Other groups have
found alterations in levels of Dnmf3a (nucleus accumbens) follow-
ing social defeat stress, which are reversible by a DNMT inhibitor
[76]. Moreover, mice that are resilient to social defeat stress (show
less social avoidance following stress) have been found to have a
higher density of Dnmf3a type II cells in the hippocampus which
reflect newly differentiated neurons, implicating methylation and
neurogenesis in stress-buffering effects [77].

Rodent models of PTSD likewise illustrate the ability of stress-
ful events to affect DNA methylation in the brain. In one study,
rats were placed on well-soiled cat litter for 10 min to simul-
ate a traumatic experience [78]. After 7 days, stressed rats had
decreased methylation of the hippocampal Disks-Large Associated
Protein (Dlap2) gene (which codes for a post-synaptic density pro-
tein) and increased mRNA expression, an effect that was related to
the strength of startle response exhibited during behavioral test-
ing [78]. In another model, restrained rats were exposed to the
presence of a cat in conjunction with social instability (i.e. differ-
cent cagemates each day). Rats that experience this trauma show
cognitive and emotional deficits relevant to those found in human
subjects with PTSD, which could possibly be mediated by long-term
epigenetic changes [79]. Several weeks after psychosocial stress,
rats showed altered methylation patterns of Bdnf in different sub-
regions of the hippocampus, which correlated with altered Bdnf
mRNA expression [80]. Changes to gene methylation have also been
elicted by fear conditioning and extinction paradigms [81–83] (see
Blaze and Roth, 2011 for a comprehensive review of epigenetic
mechanisms in learning and memory).

5.2. DNA methylation in humans

Many clinical studies have used combat veterans to link epige-
netics and PTSD. Genes involved in immune function in particular
have been implicated in PTSD, and multiple groups have found
changes in DNA methylation of these genes resulting from traum-
atic experiences [84–86]. The repetitive genomic elements line-1
and Alu [87] exhibit changes in methylation following trauma expo-
sure, and work has also highlighted the link between traumatic
events and SLC6A4 [88] and GR methylation [89]. Further, some
studies suggest that methylation changes actually play a role in
resiliency to PTSD [87,88], an intriguing concept that warrants fur-
ther research.
The Trier Social Stress Test (TSST) is a commonly used procedure to induce psychosocial stress in human subjects within a laboratory setting. In this test, subjects must perform mathematical calculations and give an oral presentation in front of a panel of “experts” [80]. A handful of studies have reported DNA methylation changes resulting from the TSST. For example, the oxytocin receptor gene (OXTR), a gene highly involved in social behavior and stress, was hypermethylated in one group of individuals following the TSST [91]. Changes in OXTR methylation following the TSST was likewise reported in patients with social anxiety [92], and another group found that 5HTT methylation moderates the association between a polymorphism at this gene locus and cortisol stress reactivity after the TSST [93]. Collectively, these studies indicate that stress during adulthood has epigenetic consequences, with relevance for stress-related disorders including PTSD.

6. Transgenerational inheritance of epigenetic marks

6.1. Introduction

We have discussed the effects of early-life and adult stressors on DNA methylation and behavior. We have briefly mentioned transgenerational effects of DNA methylation following developmental stress when appropriate, but here we delve further into this phenomenon. Information on transgenerational inheritance in terms of epigenetics has been more thoroughly investigated in plants and invertebrates [94]. In plants, epigenetic silencing via DNA methylation mainly occurs in repetitive DNA, transposons, and transgenes, and does not preferentially occur at CG dinucleotides [95,96]. Additionally, unlike mammals, the majority of methylation takes place within the gene body, with minimal methylation at the promoter region [95,96]. The plant literature has numerous examples of transgenerational inheritance of phenotype after stress (see Hauser et al., 2011 for a comprehensive review). This literature also suggests that a mechanism driving transgenerational epigenetic changes could be the lack of erasure of some epigenetic marks from the genome during reproduction [95]. Though it is well-established for the mammalian genome that these are sequential and large-scale epigenetic changes, including genome-wide DNA demethylation and imprint erasure, which help reset the epigenome between each generation and restore totipotency [97–99], there is evidence however that some methylation escapes the reprogramming process [98,99].

An emerging concept in the behavioral epigenetics field is that preconception stress, or experiences that a parent (F0 generation) had earlier in life, produce alterations in epigenetic and gene expression states and behavior in offspring and grand-offspring (F1–F2 generations) (Fig. 2). The idea of transmission of phenotype across generations is not novel, but the idea that epigenetics may mediate this transmission and the extent to which this occurs in humans is debated [100–104].

6.2. Preconception stress in rodents

Studies have shown behavioral and neurobiological abnormalities in offspring following preconception stress of the mother. For example, mild preconception stress of females (foot shock, swim stress, and elevation on a plexiglass platform) 2 weeks prior to conception produces behavioral alterations in offspring that last well into adulthood. Possible neurobiological correlates of these behavioral deficits include changes in neuronal morphology in the mPFC of offspring [105], but whether these transgenerational outcomes are conferred by stress-induced changes in maternal behavior or germ-line epigenetics (see Modes of transmission below [106]) is not known. One recent study has provided empirical support that preconception stress can epigenetically modify the germ-line (and brain) of stressed female rats. Specifically, in both mature oocytes and frontal cortices of females that underwent chronic unpredictable there was increased CRF1 mRNA [107]. Further, their offspring also had increased CRF1 mRNA in brain tissue [107].

Perhaps more surprising is the observation that paternal preconception stress can influence offspring development, especially considering the fact that rodent fathers are typically removed from the cage after conception (since they are not necessary for care of the offspring). Males that experienced maternal separation during infancy have been shown to pass on their depressive-like phenotype to offspring and grand-offspring [54]. These males have altered methylation of MeCP2, cannabinoid receptor 1 (CB1), and

![Paternal preconceptual stress](image-url)
corticotropin releasing factor receptor 2 (CRFR2) in their sperm, and their offspring have similar methylation patterns in brain tissue [54]. Offspring born to male mice who were exposed to social defeat stress show increased anxiety- and depressive-like behaviors [108]. Notably, some transgenerational effects can be produced through IVF (with sperm from the stressed male), while others are abolished.

Other groups have likewise found epigenetic changes associated with paternal stress prior to conception. In one study, males were stressed for 27 consecutive days by being placed on an elevated Plexiglas platform, and subsequently their 21-day old offspring were found to have behavioral deficits and altered global methylation in the frontal cortex and hippocampus [109]. Another group administered synthetic glucocorticoids to males 60 days prior to conception, and found global increases in non-CG methylation in their sperm [110]. In the F1 generation, adult males had significant differences in mRNA expression levels of various stress-related genes in the kidney and hippocampus, with demethylation of these genes in the kidney [110]. These results suggest that glucocorticoids produced by environmental stress before conception play a role in the transgenerational epigenetic effects. In one final study we highlight here, investigators conditioned mice to fear an odor (acetophenone) that activates a known olfactory receptor (Olfr151), and found that F1 and F2 generation offspring exhibited enhanced sensitivity to that odor when tested [111]. Additionally, offspring showed an enhanced neuroanatomical representation of the Olfr151 pathway and hypomethylation of the Olfr151 gene, and neither IVF or cross-fostering could erase the epigenetic effects of exposure to the odor [111].

6.3. Preconception stress in humans

Though far less empirically studied in humans, there is some evidence of the epigenetic transmission of the Holocaust trauma on survivors’ children. Some earlier work had found no link between parents’ experience in the Holocaust and offspring behavioral outcomes [112,113], but a more recent study has found far-reaching epigenetic outcomes in Holocaust survivor offspring [114]. Specifically, offspring who had a father with PTSD following the Holocaust had increased methylation of the GR promoter. Offspring whose parents both had PTSD had lower levels of GR methylation, and their decreased GR methylation was also associated with suppression of cortisol after a stress challenge. Together, these data demonstrate stress-related epigenetic and behavioral effects of preconception stress in humans, and that there may be different mechanisms for the intergenerational transmission of Holocaust trauma.

7. Challenges in epigenetics and exciting opportunities for future research

7.1. Modes of intergenerational transmission

One question that arises from review of these studies is whether transmission takes place due to behavioral mechanisms (i.e. driven by maternal care or other social cues) or epigenetic alterations that are being transferred through the germline. For example, the transgenerational impact of low levels of maternal care on offspring phenotype and GR methylation are reversible by cross-fostering, indicating these transgenerational effects are behaviorally-mediated through maternal care [48]. Our lab has shown that Bdnf methylation induced by maternal maltreatment can be passed across generations, but cross-fostering could not completely erase these epigenetic marks, suggesting germ-line inheritance. Our observations however of anxiety-like behavior in these females prior to parturition cloud this issue, as maternal state during gestation could have also influenced methylation patterns [59].

For germ-line inheritance, the epigenetic marks must be present in the germline and not cleared between generations. Some studies provide empirical support that this can occur [54,107,111], but many studies have not identified the mode of transmission. It stands to reason that future studies that incorporate methodology (such as IVF and cross-fostering) to tease out behaviorally-mediated vs. germ-line-mediated inheritance, will reveal substantial information regarding how paternal traumatic experiences affect offspring and grand-offspring.

7.2. Cell-type and brain-region specificity

Another challenge for the field, and one that we have not touched upon until here, is cell-type specificity, both between the CNS and periphery and that within the brain. Epigenetic modifications present in the periphery often differ from those in the brain due to differences in cell type (blood or saliva vs. neurons and glia) [115]. Recent work has highlighted saliva as a slightly more suitable match to brain samples (instead of blood), perhaps due to increased epithelial cells present in saliva [115]. Furthermore, within the brain, neurons and glia (astrocytes, oligodendrocytes, microglia) can exhibit distinct methylation patterns, and there is evidence for region-specificity of stress-induced alterations. The differential effect of cell composition on DNA methylation suggests the benefit of cell-sorting in future epigenetic studies [116,117], and the issue of brain region-specificity is an important point to consider in the context of comparing epigenetic alterations in the periphery with epigenetic alterations in the brain.

7.3. The new cytosine variants

The final challenge we highlight is the need to distinguish 5-methylcytosine from other cytosine variants (i.e. 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine) that have come to light. While hydroxymethylation is suggested to play a role in DNA demethylation, functions of this molecular mark and the other “flavors” of DNA methylation are still largely unknown. The conventional methods used for mapping 5-mC (i.e. bisulfite treatment and sequencing) do not differentiate it from 5-hmC. Standard bisulfite treatments convert unmethylated cytosines to uracil for downstream methylation analyses, but this method does not distinguish between methylated and hydroxymethylated cytosines. Recent protocols have been generated to address this (e.g. [118]), and such approaches can help elucidate the role of these multiple cytosine variants in gene expression, brain function, and behavior.

8. Conclusions

Overall, we have highlighted several lines of evidence for epigenetic modification of genes relating to stress and psychopathology linking behavioral outcomes to developmental and adult stress. It is clear that stress during the lifetime can leave its mark through epigenetic modifications, and can do so not just in the generation directly experiencing the stress, but in subsequent generations as well. There is still much to be discovered in the field of epigenetics in relation to behavior, psychiatric disorders, and transgenerational epigenetic inheritance, rendering many opportunities for fascinating new research.
Acknowledgments

The work on this article was supported by a grant from The National Institute of General Medical Sciences (1P20GM103653) and a University of Delaware Graduate Fellowship.

References

differentiate into neurons via methylation of retinoic acid receptor gene pro-
of-β (RBP) and Dnmt1 2015;37:335–44.

Roth TL, Matt S, Chen K, Blaze J. Bdnf DNA methylation modifications in the hippocampus and amygdala of male and female rats exposed to different caregiving environments outside the homecage. Dev Psychobiol 2012;55:293–305.

Saez H. Transgenerational inheritance of induced changes in the epigenetic state of chromatin in plants. Genes Genet Syst 2012;87:145–52.

Petropoulos S, Matthews SG, Szyf M. Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring. Biol Reprod 2011;84:90–3.

